Volume 38 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Liu Shiwei, Wang Rong, Zhang Tonghu, Wu Huiguo. Road Automation Monitoring System Based on Deep Learning: an Application Research[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 527-532. doi: 10.3969/j.issn.1007-2993.2024.05.004
Citation: Liu Shiwei, Wang Rong, Zhang Tonghu, Wu Huiguo. Road Automation Monitoring System Based on Deep Learning: an Application Research[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 527-532. doi: 10.3969/j.issn.1007-2993.2024.05.004

Road Automation Monitoring System Based on Deep Learning: an Application Research

doi: 10.3969/j.issn.1007-2993.2024.05.004
  • Received Date: 2023-06-30
  • Accepted Date: 2023-12-25
  • Rev Recd Date: 2023-10-09
  • Available Online: 2024-10-09
  • Publish Date: 2024-10-09
  • Traditional monitoring methods are inefficient and cannot predict soil deformation in real-time and continuously with accuracy in road construction. A road automation monitoring system integrated with artificial intelligence technology was proposed. The system consists of a real-time Internet of Things (IoT) system and a data processing system. The real-time IoT system includes embedded settlement instruments with dual pressure sensors, a data acquisition system, and a network transmission system. The data processing system utilizes deep learning algorithms to train the measured data to predict soil deformation. The composition and working principles of the monitoring system was introduced. The system was validated through on-site experiments. By comparing the data from the dual pressure sensors in the embedded settlement instruments with the data from settlement plates, the results show that the error between the two is only 6.7%. This indicated that the automated monitoring instrument has high precision in road construction monitoring. On-site experimental results also prove that the deformation prediction method based on deep learning algorithms can accurately predict soil deformation during the road construction process, with a maximum prediction error of only 5.3%.

     

  • loading
  • [1]
    谭捍华. 基于综合监测信息的类土质边坡动态施工影响分析[J]. 公路交通科技,2011,28(6):40-46. doi: 10.3969/j.issn.1002-0268.2011.06.007
    [2]
    XU H, LI F, ZHAO W, et al. Research on remote automatic monitoring system of high and steep slope based on FBG tilt sensor[J]. IOP Conference Series: Earth and Environmental Science,2019,267(4):042091. doi: 10.1088/1755-1315/267/4/042091
    [3]
    殷建华, 丁晓利, 杨育文, 等. 常规仪器与全球定位仪相结合的全自动化遥控边坡监测系统[J]. 岩石力学与工程学报,2004(3):357-364. doi: 10.3321/j.issn:1000-6915.2004.03.001
    [4]
    李 胜, 齐嘉义, 胡海永, 等. 露天矿边坡自动化监测关键技术研究[J]. 煤田地质与勘探,2016,44(6):124-128,135. doi: 10.3969/j.issn.1001-1986.2016.06.023
    [5]
    任月龙, 李如仁, 张 信. 基于多传感器网的露天矿边坡形变监测[J]. 煤炭学报,2014,39(5):868-873.
    [6]
    李爱国, 岳中琦, 谭国焕, 等. 香港某边坡综合自动监测系统的设计和安装[J]. 岩石力学与工程学报,2003,22(5):790-796. doi: 10.3321/j.issn:1000-6915.2003.05.019
    [7]
    肖贤建, 徐立中, 樊棠怀, 等. 高边坡传感器网络协同监测及信息融合系统模式[J]. 河海大学学报(自然科学版),2009,37(2):222-227.
    [8]
    李 博, 张拥军, 李乾龙, 等. 采动边坡稳定性远程在线监测预警系统[J]. 工矿自动化,2016,42(11):5-9.
    [9]
    DING X, REN D, MONTGOMERY B, et al. Automatic monitoring of slope deformations using geotechnical instruments[J]. Journal of Surveying Engineering,2000,126(2):57-68. doi: 10.1061/(ASCE)0733-9453(2000)126:2(57)
    [10]
    ZHAO Y, QIAN Q. A new type of automatic monitoring system of static and dynamic displacement on dam and slope[J]. Procedia Engineering,2012,43:387-392. doi: 10.1016/j.proeng.2012.08.067
    [11]
    刘小生, 张学庄, 王爱公. 边坡稳定性自动监测系统[J]. 煤炭学报,2007(5):473-476. doi: 10.3321/j.issn:0253-9993.2007.05.006
    [12]
    乐旭东, 刘纪峰, 曾武华, 等. 自动化监测系统在滑坡变形监测的应用研究[J]. 公路,2021,66(10):90-93.
    [13]
    陈昀灏. 软基高速公路宕渣低路堤动力响应与沉降预测研究[D]. 长沙: 中南大学, 2022.
    [14]
    邱红胜, 杨 雨, 李东健, 等. 基于等时距处理和IOWHA算子的路基沉降预测[J]. 科学技术与工程,2022,22(20):8884-8892.
    [15]
    王 珊. 高速公路路基沉降监测与预测方法的研究[D]. 唐山: 华北理工大学, 2020.
    [16]
    王周兵, 张玮鹏, 胡 义, 等. 孤山库区地质灾害自动化监测与信息化防治研究[J]. 人民长江,2022,53(S2):202-206.
    [17]
    DEHGHAN S, SATTARI G, CHEHREH C S, et al. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks[J]. Mining Science and Technology (China),2010,20(1):41-46. doi: 10.1016/S1674-5264(09)60158-7
    [18]
    PARK H I, KIM K S, KIM H Y. Field performance of a genetic algorithm in the settlement prediction of a thick soft clay deposit in the southern part of the Korean peninsula[J]. Engineering Geology,2015,196:150-157. doi: 10.1016/j.enggeo.2015.07.012
    [19]
    吴跃东, 李通达, 刁红国, 等. 双压力传感器埋入式沉降仪的研制及应用[J]. 岩土工程学报,2017,39(S1):38-42. doi: 10.11779/CJGE2017S1008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (38) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return