文章编号:1007-2993(2023)05-0567-07

软土-基岩条件下地铁车站施工间歇期的结构变形 监测与分析

柯磊1李红1刘坤1陈明银2

(1.中铁五局集团第五工程有限责任公司,湖南郴州 423000;2.苏州南智传感科技有限公司,江苏苏州 215000)

【摘要】 针对软土-基岩条件下地铁车站施工间歇期的结构变形监测与评价中存在的不足,将布拉格光纤光栅传感技术 应用于车站施工间歇期的结构变形监测中。以深圳某地铁车站为例,将光纤传感器安装在车站主体结构上,远程自动化获取结 构在施工间歇期的变形信息。监测结果表明:软土-基岩地基的主体结构在施工间歇期存在一定程度变形,监测期间车站底板的 最大应变为 62 µɛ,车站地下二层的墙柱结构最大变形为 249 µɛ,位于软土-基岩分界面附近的墙柱结构同时受到剪切和压缩应 力的影响,表明软土-基岩地基的车站设计应分别考虑底板和底层墙柱的抗弯和抗剪。

【关键词】 变形监测; 软土-基岩地基; 施工间歇期; 车站主体结构; 布拉格光纤光栅技术 【中图分类号】 U 227 【文献标识码】 A doi: 10.3969/j.issn.1007-2993.2023.05.009

Monitoring and Analysis of Structural Deformation During Subway Station Construction Interval under Soft Soil-bedrock Conditions

Ke Lei¹ Li Hong¹ Liu Kun¹ Chen Mingyin²

(1. China Railway Fifth Bureau Group Fifth Engineering Co., Ltd., Chenzhou 423000, Hunan, China; 2. Suzhou Nanzhi Sensing Technology Co., Ltd., Suzhou 215000, Jiangsu, China)

(Abstract) There are insufficient researches on the structural deformation monitoring and evaluation of subway stations during construction intervals under the condition of soft soil-bedrock. The fiber Bragg grating sensing technology was applied in the structural deformation monitoring research during the construction interval of the station. Taking a subway station in Shenzhen as a research case, the optical fiber sensor was installed on the main structure of the station, and the deformation information of the structure during the construction interval was obtained automatically and remotely. The results show that the main structure of the soft soil-bedrock foundation has a certain degree of deformation during the construction interval. During the monitoring period, the maximum strain of the station floor is $62 \mu\epsilon$, and the maximum deformation of the wall column structure of the second underground floor of the station is $249 \mu\epsilon$. Wall-column structures located near the soft soil-bedrock interface are affected by both shear and compressive stresses. Therefore, the flexural and shear strength design of the base plate and the bottom wall column should be respectively considered in the subsequent station construction of the soft soil-bedrock foundation.

[Key words] deformation monitoring; soft soil-bedrock foundation; construction interval; main structure of the station; fiber Bragg grating technology

0 引言

随着我国城市化的不断发展,多数城市开始对 地下空间进行开发和利用^[1-3]。保障城市轨道交通、 深基坑以及地下综合管廊等地下工程的安全施工成 为新的挑战。地铁作为城市地下工程的核心基础设 施,其稳定性评价尤为重要。由于城市地铁工程建设 一般紧邻既有道路、隧道、管线等,施工工况较为复杂。地铁车站基坑的开挖将不可避免地影响周围结构的稳定性^[4]。此外,地铁的建设也常常面临着复杂的不良地质条件,例如软土、湿陷性黄土、岩溶、软硬岩共存等^[5-6]。这对车站与隧道的支护结构和地铁的主体结构变形量控制与评价提出了严格的要求。

作者简介: 柯 磊, 男, 1980年生, 汉族, 大学本科, 高级工程师, 主要从事岩土工程监测与评价工作的研究。E-mail: 124721770@qq.com

结构变形的评价方法可以分为数值模拟[7-8]和 现场监测^{19]}。数值模拟方法可较为直观、全面地了解 结构在各种荷载作用下的变形。例如,白晓宇等[10] 基于有限元模拟研究了土-岩组合地层深基坑围护结 构的变形规律。朱彦鹏等[11] 通过数值模拟方法建立 深基坑结构的变形和渗流三维模型,对开挖过程中的 支护结构的变形进行了评价。江中华[12]针对地下车 站主体结构在运营期不同荷载条件下的力学响应进 行三维全尺寸的精细化数值分析。数值模拟的准确 度取决于模型预设的参数与土体和结构的实际参数 差异大小。然而在复杂的地质条件和工况下通常难 以准确获得土体的真实物理力学参数,因此,模拟结 果与实际结果存在差异。通过对车站施工过程中的 结构变形进行监测可以准确地获取其变形信息,进一 步分析结构的稳定性。鲍树峰等[13]提出根据围护墙 水平位移最大值、水平位移最大值的变化率等组合 基坑安全风险预警指标特征参数,并根据实际监测数 据对基坑的安全状态进行评价和预警。商大勇[14]对 地铁车站的基坑支护体系下阳角部位的结构变形和 土体沉降进行监测,并分析了变形规律。张 楠¹⁵ 基于两个典型岩-土地基深基坑工程案例的监测数据, 分析了岩-土地基基坑的变形特点。在复杂地质条件 下通过对结构或周围土体的监测是一种高效可行的 方法。然而,目前的研究多针对地铁施工过程中或地 铁运营期的监测与评价,车站施工间歇期的结构变形 规律的研究较为匮乏。特别处于软土-岩石地基的条 件下,由于软土的承载力较低,车站的主体结构完工 后,地基仍有可能产生较大的压缩变形。车站的主体 结构发生的差异性沉降将影响地铁的安全运营,甚至 诱发结构产生局部的裂隙。因此,软土-基岩条件下 地铁车站施工间歇期的结构变形监测研究对于地铁 的安全运营以及类似工程的设计具有重要的意义。

本文将布拉格光纤光栅(FBG)传感技术应用于 软土-基岩条件下地铁施工间歇期的车站主体结构监 测。多个 FBG 传感器被布设于车站的顶板、底板以 及墙柱结构中。为了对比不同地基条件下结构的变 形规律,本文选择位于软土-岩石地基和岩石地基两 个典型的监测剖面进行研究,并针对结构变形的差异 性进行了分析。

1 监测原理

1.1 光纤布拉格光栅 (FBG) 感测技术

布拉格光纤光栅(FBG)是纤芯折射率沿轴向呈 周期性变化的光栅。当入射激光波长与 FBG 的周期 满足布拉格条件时,光栅处的温度或应变的改变将引 起光栅周期的变化^[16]。光纤芯层和包层半径同时变 小,通过光弹性效应改变了光纤的折射率,从而引起 光栅波长偏移^[17-18]。基于应变与光栅波长偏移量的 线性关系,被测结构应变或者温度可通过计算得出^[19]。 布拉格光纤光栅具体传感原理见图 1,相关计算公式 见式(1)。

$$\lambda_{\rm B} = 2n_{\rm eff}\Lambda\tag{1}$$

式中: *λ*_B为光纤光栅的中心波长; *n*_{eff} 为光栅折射率; *Λ*为光栅周期。

由式(1)可知, FBG 反射的波长λ_B与栅格间距及 光纤折射率相关, 当光纤发生轴向变形及温度变化时 即可引起栅格间距及折射率的漂移, 从而反射波长也 发生相应漂移, 即通过测量λ_B漂移量, 即可得光纤的 变形量或温度变化量。

应变和温度与中心波长λ_в的均为线性关系,其关 联公式如式(2)所示:

$$\Delta \lambda_{\rm B} = \alpha_{\rm \epsilon} \varepsilon + \alpha_{\rm T} \Delta T \tag{2}$$

式中: a_{ϵ} 为光纤光栅应变灵敏系数; a_{T} 光纤光栅的温度灵敏度系数; ΔT 为温度变化值; ϵ 为应变。

1.2 FBG 应变计

FBG 埋入式应变计如图 2 所示, FBG 埋入式应 变计利用光纤光栅作为微测力元件。当传感器受到 轴向拉伸或压缩时, 传感器的弹性敏感元件所受的作 用力发生改变。同时光纤光栅波长发生相应的变化。 在室内标定试验确定传感器的应变与光栅波长的线 性系数后, FBG 传感器可以对结构的变形量进行监 测。此外, FBG 埋入式应变计通过增加温度参考光

栅实现温度的自补偿功能,可以有效剔除温度变化对 应变测量引起的误差。光纤光栅埋入式应变计常被 应用于结构内部应变监测,其灵敏度高,稳定性好。 传感器参数见表1。

表1	FBG 埋入式应变计参数
----	--------------

量程/με	分辨率	光栅中心波长/nm	反射率/%	应变计尺寸/mm	微锚直径/mm
-1500 ~ +1000	0.1% F. S	1510 ~ 1590	>90	直径:13;长度:110	30

2 案例分析

2.1 研究区域概况

研究区域概况和地铁车站传感器布设如图 3 所 示,研究区域位于广东省深圳市轨道交通14号线的 坳背站,建筑总面积约为40928 m²。区域周围存在 较多的既有建筑,基坑开挖深度约为19m,因此,车 站的监测工作尤为重要。基坑开挖范围内的土层浅 部主要为素填土和粉质黏土,在 8.8 m 深度以下存在 微风化碎屑灰岩,其中不均匀分布溶洞。软土地基区 域主要由黏土、粉质黏土、粉土组成。表2为软土地 基土层的基本物理力学指标。本文的研究内容是在 车站主体结构完工以及上覆回填土覆盖完成后的主 体结构变形规律。因此,相比于不同深度的地层差异 性,横纵向的软硬土的分布差异性对本文的研究更为 重要。如图 3(a)所示,根据前期勘测结果,确定了软 土-岩石的潜在分界面。以基坑的两个典型剖面 A₀-A₁、B₀-B₁为例,本文将分析软硬分布不均条件下的 车站主体结构变形特点。

坳背站为地下二层双岛式站台车站,地下一层 为站厅层,地下二层为站台层。车站顶板埋深为 5.4 m,中板埋深为 11.45 m,底板埋深为 19.65 m。为确 保基坑施工安全和地下结构运营安全,结合本地下站 的工程特点及技术条件,项目重点监测了岩溶发育区 的软土-岩石界面车站底板、顶板、柱体等结构。采 用 FBG 传感器监测结构变形,FBG 传感器的布设示 意图如图 3(b)所示。同时为了对比软土-岩石地基 与岩石地基车站结构变形差异性,B₀-B₁ 剖面的主体 结构上被布设与 A₀-A₁ 相同的传感器。

表 2 软土地基地层基本物理力学参数

		深度 天然含力 /m 量w/%		重度γ /(kN·m ⁻³)	土粒 比重 <i>G</i> 。	天然孔 隙比e	饱和度 <i>S_r/%</i>	¹ 塑性 指数 <i>I</i> _p	液性 , 指数I _L	压缩系数 _{α0.1-0.2} /MPa ⁻¹	压缩模量 <i>E</i> _{s0.1-0.2} /MPa	直剪试验			
岩土 岩土 编号 名称	天然含水 量w/%		内摩擦角 <i>φ</i> _q /(°) (快剪)									黏聚力 <i>c</i> q/kPa (快剪)	内摩擦角 <i>φ</i> 。/(°) (固快)	黏聚力 <i>c</i> ./kPa (固快)	
1	素填土	0 ~ 3.3	20.78	19.32	2.71	0.69	81.07	10.80	0.31	0.21	8.61	23.20	25.90		
2	黏土	3.3 ~ 7.5	35.71	17.98	2.73	1.07	91.27	18.50	0.67	0.50	4.54	5.88	17.38	11.65	25.40
3	粉质黏土	7.5 ~ 19.5	24.71	19.50	2.71	0.74	89.89	12.85	0.43	0.33	5.64	13.95	23.25	15.67	32.55
4	粉土	19.5 ~ 20	17.21	20.6	2.67	0.52	87.83	8.54	0.21	0.21	7.68	19.18	21.86		
5	粉质黏土	20 ~ 29.1	27.01	18.93	2.71	0.86	92.50	13.22	0.54	0.31	6.52	16.80	25.20	22.70	28.60

说明:表中物理力学参数均为土层深度范围内的平均值。

2.2 传感器布设

FBG 埋入式应变计在混凝土浇筑前绑扎于钢筋 骨架上(见图 4(a)、图 4(b))。传感器两端的引线根 部采用扎丝或扎带将其固定至钢筋上,随混凝土浇筑 即可实现埋入式应变计的植入。传感器安装完成后 采用便携式 FBG 解调仪检测传感器的存活率并记录 传感器的初始波长(见图 4 (c))。FBG 埋入式应变 计采用专用光缆引线接续,并固定至钢筋上沿钢筋引 出(见图 4 (d))。其中,引线的过弯处需要以大于 5 cm 的弯曲半径引出。引线在穿过钢筋混凝土结构

时须穿套保护管过渡保护。最后,线路被集成至 FBG 无线解调仪上,解调仪参数见表 3。

图 4 光纤光栅传感器埋设保护现场照片

表 3 光纤光栅解调仪性能参数

通道数	波长范围/mm	波长分辨率/pm	重复性/pm	解调速率/Hz	动态范围/dB	光学接口类型	每通道最大FBG数量
16	1527 ~ 1568	1	±3	1	35	FC/APC	30

2.3 监测结果

(1) A₀-A₁ 剖面结构监测结果

A₀-A₁车站板结构 FBG 监测结果如图 5 所示。 如图 5 (a)所示,针对车站顶板和底板布设的传感器 进行编号,从 A₀至 A₁,传感器编号分别为 L_{ij} (*i* = 1,2,3; *j*=1,2,...,6,*i*表示楼层,*j*表示每层传感器编 号)。软土-岩石的潜在分界面约位于车站剖面的中 间。如图 5 (b)所示,车站顶板的中部应变具有不断 增大的趋势,最大值为 25.3 με。而车站两侧应变则 不断地减少,最小值为-28.6 με。顶板的应变变化范 围较小,且车站两侧变形较为对称。如图 5 (c)所示, 车站底板整体变形不断增大,并呈现不均一性。L3-2 和 L3-4 处的应变在 11 月 6 日之后快速增大,最大 值分别为 61.6 με和 47.9 με。位于岩石地基范围内的 结构变形较大,而位于软土范围内的结构变形较小。

A₀-A₁车站墙柱结构 FBG 监测结果如图 6 所示。 车站地下二层的墙柱结构具有明显的压应变,且不断 增大,最大压应变约为 249 με。不同位置处的墙柱应 变呈现中心大两侧小的趋势,整体曲线为倒 U 型。 车站中部整体应变分布在 150~250 με范围内。同 一根墙柱的上下两个位置的 FBG 应变传感器呈现了 不同的应变值。其中,L2-4 与 L1-4 处传感器数值相 差较大,应变差值为 114 με,并且该位置位于软土-岩 石交界面附近。

(2) B₀-B₁ 剖面结构监测结果

B₀-B₁车站板结构 FBG 监测结果如图 7 所示,

软土-岩石潜在分界面位于 B₁侧的车站边界附近。 该剖面布设了三层板结构的监测点位,其编号规律 与 A₀-A₁类似。如图 7 (b)所示,顶板整体应变变化 较小,应变范围在-20~+15 με之内。而车站中板的 应变则较为复杂,从 B₀侧开始,应变的增大和减小趋 势交替出现,即 L2-1 与 L2-4 应变明显增大, L2-3 与

L2-5 应变明显减小。并且在 12 月 28 日时, L2-1 的 应变比 L2-4 处大 22 με, L2-3 处的应变比 L2-5 处大 13 με。这表明车站中板整体呈现 B₀ 侧变形值大于 B₁侧(见图 7(c))。如图 7(d)所示,车站的底板变形 规律较为明显,除位于软土附近的板结构具有明显的 变形,其余均表现较为一致的微弱变形。

B₀-B₁车站墙柱结构监测结果如图 8 所示, L1-3 和 L2-3 处的应变最大值分别为 35.6 με和 34.2 με, L1-3 和 L2-3 处的压应变最大值分别为-52 µε和-64 με。同一根墙柱的不同位置的应变近似相等。且变 化规律较为一致,在靠近软土地基处的墙柱出现应变 增大,其余墙柱均表现为不同程度的应变减小的趋势。 且与图 6 中的监测结果相比, B₀-B₁ 剖面处墙柱变形 较小, 压应变最大值约为 A₀-A₁ 剖面处墙柱压应变最 大值的 1/4。

3 讨论

对比不同地基条件下的车站主体结构的变形可 以发现,岩石地基条件下的车站主体结构整体变形明 显小于软土-岩石地基条件下,且变形较为均一,仅在 靠近软土的结构出现了较为明显的变形。墙柱的不 同位置的变形规律和变形量较为一致。而软土-岩石 地基条件下,底板位于岩石部分出现了较为明显的变 形,位于软土部分的结构变形量相对较小。

不同地基条件下车站底板变形差异示意图如 图 9(a)所示。软土-岩石交界面可以被视为一个等 效支点,位于软土部分的板结构由于底部承载力不足 随着软土的压缩整体向下移动。这将导致位于软土 部分的结构的弯曲变形较小,而由于等效支点的支撑 作用,位于岩石部分的板结构将呈现中部隆起的变形 特点,即具有明显的弯曲变形。因此,底板在等效支 点附近和岩石地基范围内具有较为明显的弯曲变形。 如图 9(b)所示,由于 B₀-B₁处的土-岩分界面位于结 构边缘处,因此只有靠近软土地基的结构存在较小的 弯曲变形。

此外,图6中同一墙柱的不同位置存在变形差 异较大的现象。不同地基条件下车站墙柱变形差异 如图 10 (a) 所示。车站地下二层的板与墙柱结构可 以视为矩形结构,当该结构全部位于软土或全部位于 岩石地基时,相邻的墙柱的变形量相差较小。因此,

矩形结构表现整体的压缩变形,同一墙柱结构的不同 位置的应变相差较小。而位于软土-岩石交界面附近 的矩形结构,底板的变形差异性导致相邻的墙柱结构 变形明显不同。在底板和中板的作用下,墙柱不但受 到压缩变形还承受一定的剪切变形,因此表现为同一 墙柱的不同位移的变形相差较大。而对于结构全处 于岩石地基条件下,其墙柱的整体变形也相应的较为 均一(见图 10 (b))。

4 结论

本文以深圳地铁坳背站为研究案例,采用 FBG 应变计对不同地基条件下的车站主体结构的变形进 行自动化监测。基于监测结果对软土-基岩条件下的 车站施工间歇期的结构变形进行分析,得到以下 结论:

(1)软土-基岩地基的车站结构变形明显大于位 于岩石地基处结构的变形。车站底板的最大应变值 为 62 με,车站地下二层的墙柱结构最大变形为 249 με。

(2) 软土-基岩条件下的车站结构变形显示明显 的差异性。车站的底板位于软土部分的弯曲变形小, 而位于岩土交界面和基岩部分出现明显的弯曲变形。 这是由于岩土分界面起到了等效支点的作用,随着软 土的压缩变形,位于软土部分的结构整体下移,而位 于岩石部分的结构在等效支点的作用下出现了弯曲 变形。

(3)位于岩土分界面附近的车站墙柱结构的变形具有明显的差异性。这是由于岩土分界面附近的相邻墙柱的差异性沉降导致车站的板结构将剪切力作用传至墙柱上。因此位于岩土分界面附近的墙柱结构同时承受着压缩和剪切变形。

参考文献

- [1] 王 睿, 苗龙刚, 章慧健, 等. 砂卵石地层新建通道施工 对上覆既有地铁车站的变形影响研究[J]. 现代隧道技 术, 2021, 58(6): 129-136.
- [2] 雷 刚,贺彦卫,张晓霞,等.土岩组合地层明挖基坑桩 撑体系设计优化[J].科学技术与工程,2021,21(3): 1150-1156.
- [3] 胡智民. 土岩组合地层浅埋隧道埋深确定方法研究

[J]. 隧道建设, 2015, 35(4): 322-327.

- [4] 金雪峰. 某紧临地铁车站土岩基坑设计与变形规律研究[J]. 地下空间与工程学报, 2021, 17(3): 815-824.
- [5] 龚旭东.处于上软下硬地层的青岛某地铁车站初支拱 盖法施工变形规律及控制[J].城市轨道交通研究, 2021,24(6):109-114.
- [6] 王海成,刘秀珍,张 龙.复杂环境下软土基坑支护设 计实践与分析[J]. 岩土工程技术, 2022, 36(2): 160-164.
- [7] 路林海,孙 红,王国富,等.地铁车站支护与主体结构 相结合深基坑变形[J].中国铁道科学,2021,42(1):9-14.
- [8] 周振鸿, 孙华波, 吕 果, 等. 深大基坑桩锚支护监测与数值分析[J]. 岩土工程技术, 2021, 35(4): 233-237.
- [9] 胡 静,孙延胜,张晶晶. SMW工法在软弱土地区深基 坑支护中的组合应用[J]. 岩土工程技术, 2018, 32(6): 317-320.
- [10] 白晓宇,张明义,闫 楠,等.土岩深基坑桩-撑-锚组合 支护体系变形特性[J].中南大学学报:自然科学版, 2018,49(2):454-463.
- [11] 朱彦鹏,李凤岐,杨校辉,等.兰州地铁红砂岩基坑开挖 监测与数值模拟分析[J].兰州理工大学学报,2022, 48(1):121-127.
- [12] 江中华.大型地铁车站主体结构运营期安全分析与安全监测方案设计[J].城市轨道交通研究,2022,25(1):63-69.
- [13] 鲍树峰,莫海鸿,王友元,等.土岩组合基坑安全风险预 警标准探讨[J].岩土工程学报,2014,36(S1):180-185.
- [14] 商大勇. 土岩组合地层地铁车站深基坑阳角变形及稳 定性[J]. 北京交通大学学报, 2020, 44(6): 25-33.
- [15] 张 楠. 土岩组合地层深基坑变形规律研究[J]. 铁道 工程学报, 2021, 38(7): 1-5.
- [16] 温明翠. FBG位移传感器的研究及其在管廊监测中应用[D]. 大连: 大连理工大学, 2019.
- [17] 张矿伟,张少杰,赵晓霞,等.光纤Bragg光栅应变传感 器在桥梁结构监测中的应用[J].光学仪器,2014, 36(1):15-19.
- [18] 何健辉,张进才,陈 勇,等.基于弱光栅技术的地面沉 降自动化监测系统[J].水文地质工程地质,2021,48(1):146-153.
- [19] 李俊鑫, 郎向伟. 基于光纤Bragg光栅的测斜仪设计与 试验[J]. 传感器与微系统, 2020, 39(4): 86-88.

收稿日期: 2022-06-30