灌注桩混凝土水下浇注的 工程事故预防及处理

马永琪

(中航勘察设计研究院,北京 100086)

【摘要】结合工程实例,阐述了灌注桩水下浇注混凝土的技术要点,针对施工中常见的工程事故,提出了预防及处理的技术措施。方法切实可行,效果显著。

【关键词】水下浇注 坍落度 缺陷处理

[Abstract] According to the engineering Practice, this paper simply discusses the technical points of pouring out concrete, points out the technical measurements of prevention and treatment in the construction

(Key woeds) Pouring—out concrete below water collapse amount detection treatment

0 前言

桩基础日益成为软弱地基上工业建筑、高层楼宇、码头桥梁、重型仓储等工程经常采用的一种深基础型式。钻孔灌注桩受到了建筑设计、施工单位的重视,使其成为目前桩基础中最受欢迎的一种型式。

钻孔灌注桩受工程地质条件及水文地质 条件的影响,大多数钻孔灌注桩必须采用水 下浇注混凝土的方法施工。

1 水下浇注混凝土施工方法

水下浇注混凝土施工是灌注桩质量控制 中最重要的一个环节。

水下浇注混凝土是用混凝土从孔底开始 灌注,将孔内泥浆置换出来,成为混凝土桩; 一般使用密封的刚性导管浇注混凝土,也可 使用混凝土输送泵连接的柔性胶管直接插到 孔底浇注混凝土,因设备投入较大,没有被普 遍采用。

导管浇注混凝土施工必不可少的设备还 有料斗、隔水阀、导管提升机械等,为便于施 工,导管分节制作,最底一节长度不超过 6.0m,导管直径常用 200~300mm。料斗容 积为 1.0m³ 比较合适。

隔水阀主要有底盖式、滑阀式两种见图1。

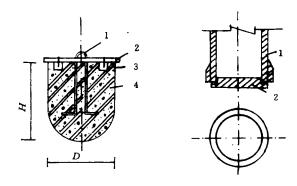


图 1 隔水阀示意图

(a)滑阀球塞 1. \$6 钢筋 2. 胶皮 3. 预埋 木块 4. C20 混凝土 D=导 管内径-20 H=D+50

(b)底盖 1. 导管 2. 钢制底盖

底盖式是在导管底部安设一底盖,将导管慢慢沉到孔底再在导管及料斗中注满混凝土,逐步提起导管,底盖随即脱落。

作者简介:马永琪,男,35岁,高级工程师,主任工程师。1980年毕业于长春地质学院。主要从事深基坑开挖与支护和工程降水工作。

滑阀式是将导管先放入孔内,导管底端 距孔底 0.5~0.7m(视导管直径而定),用铁 丝将隔水阀吊放在导管内水面上(不留孔 隙),料斗内注满混凝土后,剪断铁丝,隔水阀 将导管内水排出后留在孔内*,初次浇注的 混凝土保证导管插入深度不小于 1.0m。

浇注过程中,理想的混凝土流动方式是: 最先浇注的混凝土在最上部,一直与泥浆面 稳定接触,但是,在导管插入深度较小时,导 管内新注入的混凝土是从导管四周向上流动 的,只有导管插入较深时,混凝土才会整体上 升**。导管最大埋深不得大于 6.0m。

浇注过程中,应及时掌握孔内混凝土面 上升的高度及导管插入深度,测定每个混凝 土面位置应取两个以上的测点,测绳受拉伸、 湿度等因素影响,所标长度变化较大,须经常 校正。

浇注混凝土必须连续进行,否则先浇灌 进去的混凝土达到初凝,将阻止后浇灌的混 凝土从导管中流出。施工中,混凝土浇注速度 应尽可能地快一些,较好的方法,是将混凝土 从运输搅拌车中直接投到导管的料斗中去。 终止浇注混凝土前,须确定混凝土面真实高 度,以见混凝土中粗骨料为准。

在进行灌注桩施工之前,为确保水下浇 注混凝土作业,在调查确认混凝土搅拌站的 设备性能、拌制能力、运输能力等条件的同 时,还必须充分考虑施工场地内外运输车运 行路线、交通状况,卸料设备、排除孔内泥浆 措施等。

2 经常遇到的工程事故

水下浇注混凝土质量问题有如下几种:

- (1)导管堵塞
- (2)导管漏水
- (3)导管拔出混凝土面
- (4)混凝土上返不流畅
- (5)导管被混凝土埋住、卡死
- (6)钢筋笼上浮
- (7)混凝土拌制不符合要求

这些问题带来的后果是:

- (1)断桩
- (2)桩顶空心
- (3)桩身有夹渣、蜂窝
- (4)桩身配筋减少

以上事故可以通过施工记录分析、无破 损检测等方法来确定,由于灌注桩施工的不 可逆性,其事故处理就非常困难。

3 事故的预防

水下浇注混凝土质量事故的预防应从两 方面来解决,其一是加强管理,严把质量关, 其次是提高施工人员的素质和操作水平,减 少人为的差错。常见事故预防的技术措施一 般有如下几个方面:

(1)混凝土配合比中水灰比控制在 0.5 ~0.6,砂率应在40%~50%,粗骨料最大粒 径应小于 40mm,混凝土坍落度控制在 18~ 20cm,要有良好的流动性、和易性,用料上优 先采用中粗沙,级配较好的卵石,矿渣硅酸盐 水泥,避免使用普通硅酸盐水泥。

混凝土和易性与水泥品种、砂率有极大 的关系,砂率小、粗骨料级配不好,搅拌出的 混凝土极易离析,影响水下浇注混凝土质量。

水泥品种对混凝土的流动性影响极大, 如采用普通硅酸盐水泥搅拌出的混凝土,在 和易性、坍落度都满足要求的情况下,由于混 凝土的"粘滞力"较大,浇注过程中,混凝土上 返不顺利,需经常提管、拆管,不仅影响浇注 速度,还极易造成事故。

例如济青公路惠民段某立交桥采用钻孔 灌注桩基础,桩径 ø1200,桩长 27.00m,在灌 注 2-7"桩时,使用 525"普通硅酸盐水泥, 混凝土和易性很好、坍落度为 17~19cm,采 用 \$300 导管灌注,由于混凝土上返不顺利, 频繁拆卸导管,导管插入混凝土中的深度很

^{*} 实际上,隔水阀并不一定留在桩底,有时可以浮在桩顶上,通过对桩身抽芯检查,可以证实。因此,预制混凝土球阀应与桩身混凝土等级相同。 **利用水下浇注混凝土方法对干孔灌注施工,可以直观观测到混凝土流动情况。

小,共浇注混凝土 35m³,浇注时间竟达 7h。 后经无破损测试检验,在桩顶下 8m 处,混凝 土呈蜂窝状。后改用 425 "矿渣硅酸盐水泥, 浇注同样一根桩的时间仅为 1h20min。在不 得已使用 525 "普通硅酸盐水泥时,建议在正 常的混凝土配合比中添加减水剂,并在尽可 能短的时间内浇注完毕。混凝土配合比还应 考虑运输距离、气温影响,在夏季或运输过程 中时间较长时,应加混凝土缓凝剂,浇注前混 凝土坍落度降低可以加水灰比为 0.5~0.6 的素水泥浆。

- (2)导管使用前须做密封试验,使用后及时冲洗,预制隔水阀要准备充足,为了加快灌注速度,混凝土最好从运输搅拌车中直接投到导管的漏斗中去,我院自 1985 年开始使用,效果很好,浇注 40m³ 混凝土的一根桩,一般不超过 90min。
- (3)导管底端距孔底高度依据桩径、隔水阀种类、大小而定,最高不超过 0.5m,浇注过程中,应匀速向导管料斗内灌注,如突然灌注大量的混凝土导管内空气不能马上排出,可能导致堵管,若管内空气从导管底端排出,可能带动导管拔出混凝土面。
- (4)浇注过程中,须不断测定混凝土面上升高度,并根据混凝土供应情况来确定拆卸导管的时间、长度,以免发生桩身夹渣、断桩或"埋管"事故。如济青公路某大桥桩基础(桩径 \$1200)施工中,灌注混凝土 12m³时,按照理论或经验计算,混凝土面上升高度约9.0m 左右,但实测高度仅为3.2m,仅凭经验判断,已造成工程事故。
- (5)导管插入混凝土中的深度应根据搅拌混凝土的质量、供应速度、浇注速度、孔内护壁泥浆状态来决定,一般情况下,以2~6m为宜。

如果导管插入混凝土中的深度较大,供 应混凝土间隔时间较长,且混凝土和易性稍 差,极易发生"埋管"事故。如某时代大酒店灌 注 14 [#] 桩时导管被埋住,是由于导管插入混 凝土中的深度较大,和易性又差造成,某水泥厂水泥库钻孔灌注桩施工时,发生了三次埋管事故,均是因为导管插入混凝土中的深度大,浇注时间长所致。

如果预料到不能及时供应混凝土(超过1h),混凝土运输距离远,交通堵塞等因素时,除混凝土中加缓凝剂外,导管插入混凝土中的深度不宜太小,据已往经验,以5~6m为宜,每隔15min左右,将导管上下活动几次,幅度以2.0m左右为宜,以免使混凝土产生初凝假象。浇注混凝土中断超过2h,应判为断桩。

(6)产生桩顶空心的因素有:导管插入混凝土中的深度较大,混凝土坍落度小,桩径小(≤¢800)桩顶空心呈不规则漏斗形,其深度、位置与导管拔出时的位置、桩顶混凝土状态有关。

某水泥厂熟料库桩基础施工现场实测数 据如下:

桩径:∲600		桩长:28m			导管直径: \$2 50	
灌注结束时导管插入混凝土中深度:10m						
灌注混凝土面终止高度:地表						
导管拔出混凝土 后持续时间/s		20	120	300	600	开 挖 后
空心	24 # 柱	1.6m	1.0m	0.8m	0.7m	0.6m
<u>深度</u>	19#桩	1. 3m	0.6	0.5m	0.5m	0.4m

防止桩顶空心,建议采用如下方法:

- (1)灌注结束前导管插入混凝土中深度 不超过 6.0m;
- (2)灌注结束后,导管拔出混凝土之前,导管上下活动几次,幅度不超过50cm,或者用机械、人工振捣桩顶混凝土,时间不超过20s。
- (3)尽可能缩短灌注时间,避免使桩顶混 凝土产生假凝现象、降低桩顶混凝土的流动 性。

4 工程事故处理

工程事故处理必须按照有关规定、程序, 与业主、设计单位、监理公司等有关部门协 商,经批准后,才能进行。

(1)桩身缺陷处理

桩身缺陷必须经过目前国家认可的检测 手段确定,最好能够定量地指出桩身缺陷的 范围、严重程度。


如场地条件允许,可采用补桩处理,每个 缺陷桩两侧各补一根。

对于桩身有夹渣、蜂窝的缺陷,可以采用 注水泥浆处理。例如济青公路惠民段某立交 桥 2"一7"桩,桩身蜂窝采用抽芯钻孔注浆处 理,素水泥浆用 525"普通硅酸盐水泥,水灰 比是 0.45:1,桩顶抽芯钻孔两个,从其中一 个钻孔口用水泵压清水,另一孔中返水至清 后,用注浆泵注素水泥浆,注浆管从孔底开始 注浆,两个孔都返出合格水泥浆为止。后经无 破损检验,满足工程要求(见图 2)。

(2)导管拔出混凝土面

水下浇注混凝土过程中,如误将导管拔出混凝土面,必须及时处理。孔内混凝土面高

CH. No. : 1 Vernier: 0. 0000 H. Range 128. 000 H.

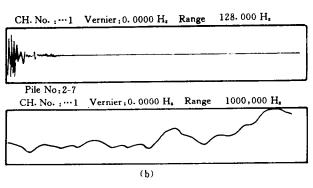


图 2 2[#]-7[#]桩动测波形及频谱曲线 (a)未经处理之前 (b)经注浆处理之后

度较小时,终止浇注,重新成孔;

孔内混凝土面高度较高时,可以用二次导管插入法,其一是导管底端加底盖阀,插入混凝土面 1.0m 左右,导管料斗内注满混凝土时,将导管提起约 0.5m,底盖阀脱掉,即可继续进行水下浇注混凝土施工。由于要克服泥浆对导管的浮力,混凝土面较深时,不宜采用;其次是用滑动球阀"二次求和法"处理,以某水泥厂生料库 54 [#] 桩为例见图 3,具体操作步骤如下:

- ①准确测定混凝土面位置为地表下 6.0m,将 \$250、长 7.0m 导管吊放在混凝土 面上。用双股 7*铁丝系上预制混凝土球阀, 放在导管内水面上;
- ②导管上料斗内注入混凝土 0. 1m³,缓慢将预制混凝土球阀放在导管底端,把铁丝固定在料斗上。
- ③把导管插入混凝土面下 1.0m,料斗内注满混凝土。

④剪断铁丝,连续浇注混凝土 至地表。

此方法使用时,必须由有经验 的工程师现场指导,导管长度、吊预 制混凝土球阀铁丝长度、铁丝抗拉 强度、混凝土面实际位置等数据,必 须在事先正确确定。

(3)导管卡死、断裂造成的断桩 导管插入混凝土中拔不起来或 被拔断,如果桩径较大,可以采用二 次导管插入法处理,否则只能补桩、 接桩。

接桩一般用人工孔的办法处理,清除桩顶残渣,接钢筋笼,浇注 混凝土至设计标高。

某时代大酒店桩基础工程, 14"桩导管断裂,终止浇注混凝土; 桩径 \$600,配筋长 13.0m,混凝土 等级 C20,14"与 15"桩共一承台, 上为构造桩,因而不能用补桩的办法处理,只能接桩。

桩径小、场地小、地层以砂层、花岗岩残

积土为主,是富水层,人工挖孔处理失败,后 采用钻机处理见图 4。

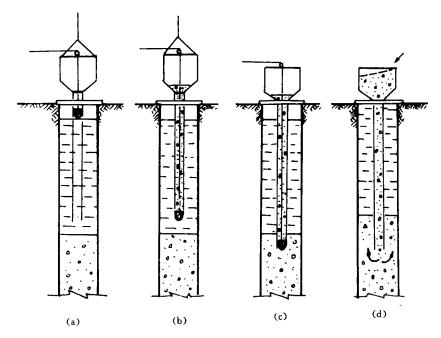


图 3 二次求和法实际操作示意图

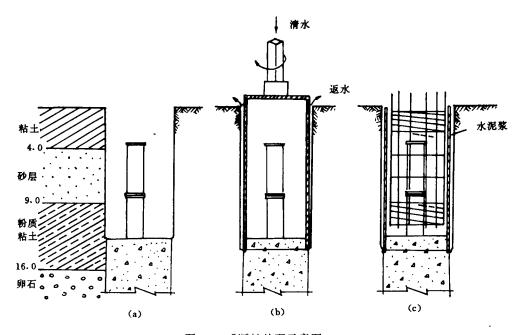


图 4 14 断桩处理示意图

①用抽芯钻机取样,确定混凝土面高度 是在地表下14.0m,浮渣层很薄,利用抽芯钻

机在桩顶四周处理浮渣层;

②用10mm厚的钢板,制作一个内径

¢600、长 14.00m 的钢筒,底口镶嵌合金钻 刃,上顶封闭,中心焊一个与回转钻机方钻杆 插接的套筒。

- ③将钢筒放入孔内,回转钻机支稳、校正,利用钢筒作钻具,使用清水正循环钻进,钢筒嵌入桩顶 1.00m,停止。
- ④将清水换做水灰比 0.5:1 的素水泥浆注入钢筒内,筒外侧充满水泥浆为止;
- ⑤将钢筒顶盖切掉,2h后,用底吸式潜水泵排出筒内水泥浆,放入钢筋笼,干孔浇注 C25 混凝土至设计桩顶标高。

(4)钢筋笼上浮

非通长配筋的桩,当混凝土坍落度偏小、 浇注速度较快时,容易将钢筋笼浮起,施工中 除注意控制坍落度,浇注速度外,还应注意导 管底端避免位于钢筋笼底口上下 2.0m 之内 的位置;法兰连接的导管为防止挂钢筋笼,在 法兰处加焊护罩效果好。

防止钢筋笼上浮的办法很多,如:笼顶主筋与钢护简点焊在一起;用重物固定笼子吊环等;我们自 1986 年开始,采用在主筋上焊"倒刺"的方法,来防止钢筋笼上浮,效果很好。

"倒刺"用 $\phi 8 \sim \phi 10$ 钢筋制作(图 5),钢筋笼同一截面焊 $3 \sim 4$ 个"倒刺",每个笼子设两道即可。

(5)桩顶处理

设计桩顶标高常常低于地表,受泥浆各项指标、地层岩性、混凝土配合比等因素的影响,灌注混凝土时,桩顶超灌高度较难控制,一般桩顶浮渣层厚 0.5~1.0m 左右,混凝土面的高度,其准确的测定,应以见混凝土中粗骨料为准。

超过桩顶部分的混凝土,达到设计强度后,需要清除,方法有:

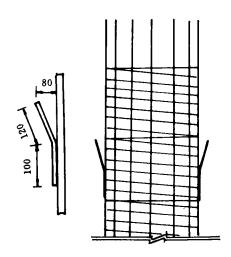


图 5 "倒刺"示意图

- ①人工凿除(效率低);
- ②风镐凿除(噪音大,桩顶易受扰动);
- ③手持冲击钻打孔,注化学膨胀剂清除(桩顶易受扰动)等。

我们在长期施工中,摸索出两种较好的方法,介绍如下:

其一是用具有一定压力的清水(压力不 宜太大),扰动桩顶上部混凝土,成为较松散、 低强度的混合物,桩头开挖后,比较容易凿 除。

其二是在灌注混凝土结束后 2h,即将桩顶上部泥浆、浮渣层人工清掉,预留 0.2 ~ 0.3m 的保护层,24h 后,人工凿除保护层即可,桩顶需要注意养护,不能失水、受冻。

参考资料

1 周国钧,牛青山编译.灌注桩设计施工手册.北京,地震出版社,1991.5

收稿日期:1996-05-03