文章编号:1007-2993(2006)03-0159-04

复杂地质条件下隧道填充性岩溶三维有限元分析

张志强

(慈利县建筑设计院,湖南慈利 427200)

【摘 要】 采用三维弹塑性有限元法,对某隧道 DK278+628-+698 段填充性岩溶软基加固后的效果进行了分析。分析过程中,采用 Drucker-Prager 模型及刚-柔接触模型,模拟了加固前后隧道填充性岩溶的应力、位移及应变情况,根据分析结果,对工程起到了很好的指导作用。

【关键词】 填充性岩溶; 旋喷桩; 有限元法; 数值模拟; 软土地基 【中图分类号】 TU 457

Analysis on the Tunnel in the Filling Karst Under Complicated Geological Conditions by 3D Finite Element Method

Zhang Zhiqiang

(Cili County Institute of Architectural Design, Cili Hunan 4272000 China)

[Abstract] The filling karst soft roadbed reinforcement of the tunnel bottom in DK 278 + 628 - + 698 section of a railway is analyzed by three dimensional elasto-plastic contact finite element method. The Drucker-Prager model and elastic-plastic contact model is used in simulating the stress deformation and strain of the tunnel. And the result has guiding significance on the engineering.

[Key Words] filling karst; rotary jet grouting pile; finite element method; numerical simulation; soft soil foundation

1 概 况

某铁路隧道进口开挖揭示 DK278 + 628 -+698 段发育一大型全充填溶洞,溶洞加固之前主 要充填有黄褐色软塑-硬塑粘土夹碎石、松散-中密 块石土,隧道洞身均位于充填物中。隧道施工过程 中,多次发生临时支护拱部开裂及大面积坍塌,为了 保证隧道施工的安全可靠及正常运行,对 DK278 + 628 - +678 段隧底拟采用旋喷桩加固,为了有效检 验加固效果,很有必要对该填充性岩溶软基加固方 案的加固效果进行数值计算。

旋喷桩对隧道填充性岩溶软基进行加固在我国 是一种新的技术,为了认识该复合地基复杂的工作 机理,为今后的设计和施工提供依据,本文采用三维 弹塑性有限元法对旋喷桩复合地基加固进行了有效 的评估。

- 2 填充性岩溶软基处治技术的三维有限元计算分析
- 2.1 计算范围、模型网格划分及参数的确定

采用 AN YSYS 软件进行三维有限元计算, 根据 圣维南原理, 整个模型计算范围为 107 m×110 m× 472 m。隧道最大洞跨 6.86 m, x 面边界距隧洞 7.3 倍洞跨, y 面边界距隧洞为 7.3 倍洞跨。沿隧道轴 线方向 z 轴, 长 472 m; 水平向右 x 的正向, 长 107 m; 竖直向上为 y 轴的正向, 长 110 m。隧底溶 洞沿隧道轴线方向长为 50 m, 溶洞充填物隧底下最 深约 30 m, 最低底板标高为 425.48 m, 对于隧底溶 洞进行模拟时, z 面边界距溶洞为 210 m, 即为隧底 溶洞长度的 4.2 倍, 计算模型各部位的尺寸均与实 际情况相符。

对进口段从桩号 DK278+628 到 DK278+698 这段隧道进行网格划分,采用六面体八节点块体单 元。

计算时, 取铁路岩溶路基基底土弹性模量 E_s = 9 MPa, 铁路岩溶路基基底土泊松比 μ_s =0.3; 根据 现场实验, 置换率 m = 20 %, 桩体弹性模量 E_p = 100 MPa, 取桩体泊松比 μ_p =0.2。运用复合模量法 分别求出了旋喷桩加固后复合土体的弹性模量和泊 松比为:

$$E_{\rm ps} = mE_{\rm p} + (1 - m)E_{\rm s} =$$

0. 2×100+(1-0.2)×9=27. 2, MPa

 $\mu_{\rm ps} = m \mu_{\rm p} + (1 - m) \mu_{\rm s} =$

 $0.2 \times 0.2 + (1 - 0.2) \times 0.3 = 0.28$

铁路岩溶路基基底土与白云质灰岩的本构关系

采用 Drucker-Prager 模型, 隧道拱圈混凝土视为线 弹性材料。参考有关文献的基础上, 确定计算过程 中各介质的力学参数, 见表 1。

表	1	力	学	参	数

f	名	称	<i>E</i> / M Pa	泊松比 ⊭	c∕ kPa	φ/ (°)	$\gamma/(kN^{\circ}m^{-3})$	$K_{\rm s} / ({\rm M \ N^{\circ} m^{-3}})$	$K_{\rm n}$ (MN ° m ⁻³)
拱圈混凝土	Ł		2. 8×10 ⁴	0. 15	600	40	23		
白云质灰岩	H		7. 0×10^3	0. 20	600	45	21		
粘土			9. 0	0.30	5	20	19		
拱顶白云质	5灰岩填	±	105	0. 20		35	20		
换填的垫层			105	0. 20		35	20		
复合土体			27. 2	0. 28	250	35	23		
铁路岩 溶路	各基基底	【土 与 隧道 拱						25	36
底之间								25	50
铁路岩 溶路 灰岩之间	各基基底	(土与白云质)						25	36
白云质灰岩	当与隧道	拱顶之间						30	45
填土与隧道	道拱顶之	间						25	36
溶洞加 固☑ 底之间	☑复合土	_体与隧道拱						36	51
溶洞加 固区 灰岩之间	☑复合土	体与白云质						40	65

2.2 接触面单元

本次计算采用面-面接触分析中的刚-柔接触模 型进行分析。分析时,首先判断潜在的接触面,然后 指定接触区域大小,将刚性面定义为目标面,柔性面 定义为接触面。计算模型考虑了钢筋混凝土与砂土 及砂土与探头之间接触面的接触情况。

2.3 边界条件处理

边界条件分为荷载和位移。计算模型的左右边 界面约束水平方向的位移;上部边界面为自由界面; 下部边界面约束垂直方向的位移。荷载为分:1)上 部边界则施加 1.35 MPa 的均布面荷载,以模拟上 覆岩体的质量;2)周围白云质灰岩对计算区域施加 应力,应力为岩体的自重引起的侧压力,呈三角形分 布,面荷载最大值为 3.18 MPa;3)隧道内轨顶面有 静止的列车荷载,分布范围为 1.75 m×3.5 m 的均 布面荷载。

2.4 计算结果与分析

2.4.1 加固前后溶洞土体位移分布特点

隧道隧底填充性岩溶加固前,溶洞深层填土的 位移变形量则相对较大,对该区段隧道地基稳定性 的影响十分显著。加固前,溶洞顶部的最大下沉值 107.53 mm,溶洞底部最大隆起值为+67.16 mm, 溶洞左右侧的最大水平位移值则为 94.35 mm。隧 底溶洞加固以后,隧底溶洞浅表层和深层填土变形 的趋势总体上基本相似,但溶洞加固圈内填土的位移变形量则明显减少,溶洞沉降量仅为加固前的0.08倍。经计算可知,溶洞顶部的最大下沉值为8.51 mm,溶洞底部的最大隆起值为2.16 mm,溶洞左右侧的最大水平位移值则为2.35 mm。

由于加固后溶洞复合土体的变形模量高出加 固前铁路岩溶路基基底土很多,所以加固后溶洞复 合土体中各点的 x 向位移 v 向位移曲线近平直线 (见图 1、图 2)。土体中各点的 x, y 方向的位移情 况反映了它们在复合地基中所处位置的关系。加 固前后填土中的 x 向位移 (里程 DK278+640 处) π_{v} 向位移(DK278+628~678,以起始位置为 零点)。溶洞上部都有向-x 方向位移而其下部有 harphi+x方向位移的趋势。虽然它们的数值不大,但 都反映了上部荷载向地基深部和横向扩散的趋势, 加固前溶洞复合土体中各点 x 向平均位移为加固 后的 20.5 倍;加固前后溶洞土体中各点沿线路长 度均有-v方向的位移,加固前溶洞复合土体中各 点 v 向平均位移为加固后的 1.6 倍。这说明通过 加固,复合地基的抗变形性能得到了很大的提高, 这是由于旋喷桩的刚度随着水泥掺入量的增加而 提高,对于有一定刚性的旋喷桩复合地基而言,其 位移的变化主要是由加固层竖向变形的减少构成: 同时下卧层竖向变形值出现小幅增大,由于加固层 竖向变形值大于下卧层竖向变形值,所以,旋喷桩 复合地基总体位移仍相对于加固前地基有很大的 减少。

图 1 加固前后溶洞土体 x 向位移沿深度变化曲线

图 2 加固前后溶洞土体 y 向位移沿线路长度变化曲线

2.4.2 加固前后溶洞土体应力分布特点

加固方案下的应力集中程度及塑性区范围比加 固前明显减少,大大增强了地基的稳定性,提高了地 基的承载力。

加固前后溶洞土体中 σ_z 沿线路长度的变化曲 线(分别取溶洞深 Z=0, Z=5 m 与 Z=10 m)分别 见图 3、图 4。由图可知,加固前, σ_z 沿隧道线路长 度增加,增加幅度基本相同;加固后, σ_z 沿隧道线路 长度减少,且最大 σ_z 值仅为加固前的 6.78×10⁻⁴ 倍,应力扩散程度很大。

图 4 加固后溶洞土体中 σ_z 沿线路长度变化曲线

2.4.3 加固前后溶洞土体塑性应变分布特点

加固前后溶洞土地体中塑性应变 ε_z 沿线路方 向变化曲线分别见图 5、图 6(分别取溶洞深 Z=0、 Z=5 m 与 Z=10 m)。由图可知,加固前后塑性应 变 ε_z 均为压应变,且沿线路长先减少,后增大,并在 里程 DK 278+640 处均取得最小值;加固后应变值 很小且变化规律同加固前,其最大塑性应变约为加 固前的 6. 23×10⁻⁵倍。

图 5 加固前溶洞土体塑性应变 cz 沿线路方向变化

图 6 加固后溶洞土体塑性应变 cz 沿线路方向变化

3 结 论

1)算例计算分析表明,本文采用的面-面接触分

析中的刚-柔接触模型能够较好的模拟各种不同介 质接触的情况,适用于旋喷桩复合地基计算分析,计 算结果证实了结果的合理性。

2)通过有限元计算分析得知,加固前,溶洞周 边土体均产生了较大的位移、沉降变形和塑性应 变,而且塑性应变区集中的现象较为显著;加固 后,在填土中形成具有一定强度的水泥-填土复合 土体,大大改善了土体的强度,增强了铁路岩溶路 基基底土的整体性,减少了填土体大孔隙或裂隙 的影响,提高了填土的强度。加固方案下的最终 计算结果表明,溶洞的整体位移变形量、应力集中 程度、塑性区的应变值及地表土体沉降变形量则 明显减少,大大增强了地基的稳定性,提高了地基 的承载力。

3)实例计算表明,有限元方法是旋喷桩复合地 基计算的有效方法,可进行较复杂情况的模拟计算, 能对旋喷桩复合地基效果进行有效分析。

参考文献

- [1] 吕建兵,傅鹤林,赵 惠. HSP 地质超前预报技术及其 应用. 第二届全国土木工程研究生学术论坛. 2004.
- [2] 吕建兵,傅鹤林.填充性岩溶软基加固方案的模糊综 合评价与工程应用.第五届全国地面岩石工程学术 会议中南地区岩石力学与工程学术会议.2005.
- [3] 铁道部第二勘测设计院. 岩溶工程地质[M]. 北京:中国铁道出版社, 1984.
- [4] 钟桂彤. 铁路隧道[M]. 北京:中国铁道出版社, 1996.
- [5] 朱 , 王根会. 铁路桥梁旋喷桩复合地基的三维弹 性有限元分析[J]. 铁道学报, 1996, 18(6): 95-99.
- [6] 黄 斌,杨 敏,熊巨华.不同材料桩型时的桩基三维有限元分析[J].岩土工程技术,2004,18(2):78-82.
- [7] 吕建兵,傅鹤林. 破碎围岩中深埋隧道荷载计算值的 对比[J]. 西部探矿工程,2004,93(2):96-99.

收稿日期: 2006-02-14

(上接第116页)

3)陆相沉积环境不仅造成泥质岩岩性和组成不均一性,也造成工程性质的差异。岩石的强度随粘 粒含量降低而提高,尤其是随蒙脱石含量减少、 Fe₂O₃和CaCO₃胶结物含量增高而增大;膨胀性随粘 粒含量增高、蒙脱石含量和比表面积增强及成岩胶 结程度减小而增大。

4)断层岩由于岩石完整性被破坏、密度减小、含 水量增大,不仅膨胀性显著增大,强度也强烈减少, 因此断层带是隧道施工中工程地质问题和地质灾害 的易发地段,是加强工程支护的重点和难点。 5)埋深<60 m 的浅部泥质岩由于岩体的长期 卸荷和松弛作用,不仅岩石密度有所降低,含水量有 所增大,膨胀性也有所增高。

参考文献

- [1] 曲永新,徐晓岚,时梦熊,等.泥质岩的工程分类和膨胀势的快速预报[J].水文地质工程地质,1988(5);
 42.
- [2] 康红普.水对岩石的损伤[J].水文地质工程地质, 1994(3):39-40.

收稿日期: 2006-02-06