水下灌注桩使用剪塞法和拔塞法评析

吴 群

(核工业工程勘察院 郑州市 450002)

水下混凝土灌注桩首次压浆时,一般都 要在漏斗底部放一个隔水塞,保证漏斗内有 一定量的混凝土,从而使导管底部有足够的 混凝土埋深量。

剪塞法和拔塞法是灌注桩施工中最常见的两种隔浆方法。所谓剪塞法就是剪断连接隔水塞的铁丝等,使隔水塞在混凝土压力作用下在导管内行走直至孔底。所谓拔塞法则是把隔水塞从漏斗底部拔出来,混凝土直接与泥浆接触直至孔底。

使用剪塞法时,一般把隔水塞做成圆柱形,外径略小于导管内径,并在顶部固定一个圆形胶皮,其外径略大于导管内径,使混凝土在导管内完全与泥浆隔离。隔水塞是一次性使用。使用拔塞法时,隔水塞有要能堵住漏斗底部即可,一个隔水塞可以重复使用。在施工中使用剪塞塞法要比使用拔塞法复杂一些。

使用过两种方法究竟对桩各有什么影响

呢?为了能清楚地看到使用这两种方法混凝土在导管内的动态。我们做了这样一个实验:取一根直径250mm、长1.8m的透明玻璃管,把一头封住作为钻孔,取一根直径59mm,长2.0m的透明玻璃管作为导管,并相应配制了泥浆、混凝土等,之后分别用这种方法做了实验。从实验中可以清晰地看到:使用剪塞法时,混凝土与泥浆在导管内完全隔离。只是在压浆完毕,导管外面混凝土上部泥浆有轻微变色混浊。使用拔塞法时,一开始导管内混凝土就与泥浆大量混合,变色凝浊。压浆完后,混凝土中砾石、砂子、水泥离散且有泥浆严重污染。

实验表明:使用拔塞法桩身底部混凝土 严重破坏了原配合化,达不到混凝土强度设 计要求。

1994年 6 月,武汉天一大厦 有 两 个 公司各施工了一组试桩,分别采用了拔塞法和 剪塞法压浆。施工的桩均为端承桩,两桩相

腐蚀性等级为中等腐蚀性。另外,现场电导率在气温20°C~40°C干燥状态下的实 测 值为0.04~0.11(Ω m⁻¹),当地层处 于 饱和状态时电导率可增加2~3倍。由此说明该区含盐土将具有较强的腐蚀性。现场调查也充分说明这一点,60天内铺设的3mm壁厚的输水钢管外壁腐蚀深度可达1.0mm。

5 结束语

综上所述,塔里木炼油厂地段 50cm以上 为盐渍土,50cm以下为含盐土,并不具有溶 陷性和盐胀性,按含盐土,中SO,²⁻和Cl⁻含 量分析,该含盐土具有中~强腐蚀性。该区 拟建各类建构物时,设计单位对含盐土的腐 蚀性应有足够的重视。

参 考 文 献

- 1 徐攸在·盐渍土地基·中国建筑工业出版社, 1993
- 2 中国石油天然气总公司基建工程局·盐渍土地 区建筑规定·1991
- 4 中华人民共和国国家标准《岩土工程勘察规范》(GB50021--94)

距120m左右, 地层情况和孔深 基 本 相同, 灌注前两桩都采用了膨润土配制泥浆进行了 二次清孔。下面是两组试桩的工艺参数和试验试果:

表1 钻孔工艺参数

工艺参数	使用钻机型号	孔径	孔径	泥浆比重	含砂率	泥浆粘度	入言深度	孔底沉碴
钻孔号		(mm)	(m)	(g/cm ³)	(%)	(s)	(m)	(cm)
263	GQ—12	1000	62.39	1.17	2.60	21	0.5	0
297	GQ—12	1000	62.18	1.20	3.00	19	0.5	0

表 2 试验荷载-沉降汇总表

	试桩号263	(采用拔塞法)		试验号297(采用剪塞法)				
序号	荷载	沉 降 (mm)		序号	荷载	沉 降 (mm)		
	(kN)	本 级	累计		(kN)	本 级	累计	
1	2000	0.42	2.43	1	2600	2.55	2.55	
1 2	3000	2.43 2.51	4.94	2	3900	3.06	5.61	
3	4000	3.77	8.71	3	5200	3.48	9.09	
4	5000	2.66	11.37	4	6500	3.33	12.42	
5	6000	4.41	15.78	5	7800	4.03	16.45	
6 7	7000 8000	4.48	20.26 25.15	6	9100	4.22	20.67	
8	9000	3.90	29.05	7	10400	3.71	24.38	
9	10000	7.32	36.37	8	11700	4.41	28.79	
10	11000	7.37	43.74	9	13000	4.50	33.29	
11	12000	5.90	49.64	10	14300	4.42	37.71	
12 13	13000 14000	5.68 5.13	55.32 60.45	11	15600	4.01	41.72	
13 14	0	-19.80	40.65	_		18.41	23.41	
				12	0	10.41	23.41	

从两组试桩的试验数据来看,在荷载加到9000 kN之前,两桩的沉降是基本差别不大。但当荷载加到10000kN,时两桩的沉降是突然出现较大差异,当荷载都卸为零时,两桩的残余沉降量也有较大差异。这说明:在荷载加到9000kN时,两桩的侧摩阻力是差不多的,当荷载加到10000kN时,侧摩阻力已充分发挥,不能承受荷载而要端阻力分担时,就显示出桩端底部混凝土的质量了。这里剪

襄決显然优于拔塞法。

综上表明:在施工摩擦桩时,由于摩擦桩承载力主要由侧摩阻力提供,桩端阻力处于很次要的位置,因此使用拔塞法压浆比较简单,且对桩的承载力不会有大的影响。在施工端承桩时,由于端承桩的承载力主要由桩端阻力提供,侧摩阻力处于次要地位,因此必须使用剪塞法压浆才能保障桩的设计承载力和沉降量要求。