文章编号:1007-2993(2002)04-0191-04

路堤荷载下次固结沉降分析

刘开元 王 祥

(铁道第四勘察设计院地路处,武汉 430063)

【摘 要】 以广珠准高速铁路软土路堤试验的沉降测试结果为例,对目前国内计算次固结沉降的方法进行 了实例分析。提出对于工后沉降要求较高的情况下,应考虑次固结沉降。

【关键词】 路堤荷载;次固结;沉降

【中图分类号】 TU433

Analysis of the Secondly Consolidation Settlement with Embankment Load

[Abstract] Taking the results of the settlement of the test on the Guangzhou—Zhuhai Qusai—High—speed Railway for example, analyzing the ways of calculation on secondly consolidation settlement in our country now. With the high after settlement standard, the secondly consolidation settlement should be taken account.

[Key words] embankment load; secondly consolidation; settlement

0 引 言

通常认为软土地基在荷载作用下发生的 沉降由三部分组成,即瞬时沉降 sd、主固结沉 降 se 和次固结沉降 ss。加荷的瞬间(短时间) 主要是按弹性模式发生沉降,然后按主固结沉 降模式(通常认为指数函数规律)发展,最后主 要按次固结沉降模式(土骨架的蠕动变形等所 引起的沉降)发展。对于瞬时沉降和主固结沉 降已进行了大量的研究,其计算方法和公式已 被广大工程技术人员应用。但对于次固结沉 降,由于其量值较小,并未引起工程技术人员 的重视,在许多工程设计中被忽略。随着高等 级公路和铁路的兴建,其较高的工后沉降标 准,如《京沪高速铁路线桥隧站设计暂行规定》 规定:路基工后沉降量一般地段不应大于 10 cm,桥台台尾过渡段路基工后沉降量不应 大于5 cm,这使得考虑次固结沉降成为必要。

目前认为次固结沉降主要是在有效应力 已经基本不变、但土的体积仍随时间增长而发 生的压缩^[1]。国内外对次固结已进行了大量的研究,提出许多描述次固结沉降的模型和公式,但由于模型及公式的复杂性,工程中应用得较少。文中以广珠准高速铁路软土路堤试验的沉降测试结果为例,以较为简单、易于应用的计算方法,对次固结沉降进行了计算分析。

1 次固结沉降计算方法

目前国内应用于次固结沉降计算的方法, 主要有钱家欢⁻王盛源法^[2,3](以下简称钱⁻王 法)、规范法^[4]、三模式法^[5,6]、ds/dt法^[7]。

1.1 钱家欢-王盛源法

用实测的沉降资料, 绘制 $lg[(\varepsilon(\infty) - \varepsilon(t))/q_0]^{-t}$ 关系曲线, 式中: $\varepsilon(\infty) = s(\infty)/H$, $\varepsilon(t) = s(t)/H$, $s(\infty)$ 、s(t)分别为最终沉降和不同的 t 时的沉降, q_0 为路堤荷载, H 为地基压缩土层的厚度。可得到如图 1 所示的曲线, 图中 B 点以前为曲线段, 这段时间内的变形包含渗水固结和骨架的蠕动变形两部

作者简介:刘开元,男,汉族,1959年生,贵州镇远人,西南交通大学毕业,高级工程师。主要从事岩土工程管理、 设计、施工与科研工作。

分,但绝大部分为渗水固结变形; *B* 点以后为 直线段,这段时间内的变形几乎为骨架蠕动变 形,总应力已接近骨架有效应力。因此可用 *B* 点判断主、次固结沉降的时间,从而由最终沉 降减去 *B* 点对应时刻的沉降,可近似得次固 结沉降值。

图 1 主固结与次固结分界曲线图

1.2 规范法

方法 1 次固结沉降用下述经验公式计算:

$$s_{\rm s} = \beta_{\rm lg(t/t_0)} \tag{1}$$

式中: $^{\beta}$ 为s-lgt曲线上呈直线段的斜率,由实测沉降观测结果推算; t_0 为s-lgt曲线上呈直线段开始的时间;t为需要计算次固结沉降的时间。

方法2 次固结沉降用下列公式计算:

$$s_{s} = \sum_{i=1}^{n} \Delta h_i \, \frac{C_{ai}}{1+e_i} \lg \left(\frac{t}{t_0} \right)$$
(2)

式中: C_{ai} 为第 i 层土的次固结系数, 无试验值 时可近似取 $C_{ai}=0.018 w$, w 为天然含水量; $\triangle h_i$ 为压缩土层中第 i 层土厚度, 整个压缩土 层厚度为 H; t_0 为主固结完成时的时间; e_i 为 第 i 层土的孔隙比, 其他符号意义同方法 1。 1.3 三模式法

基于沉降发生分三个过程,设想把其分成 三部分,分别对各部分进行预测,对提高预测 的精度可能会有所裨益。

具体过程为(其原理类似日本 Asaoka

法^[5,6]):

1)根据沉降发展三过程的概念,把现场实测的沉降资料整理成沉降-时间对数曲线(s-lgt曲线)。如图 2 为根据广珠准高速铁路软 土路堤试验段 3[#]断面的实测沉降数据整理成的 s-lgt曲线。

2)可近似把曲线分成三段直线:直线 AB 为以瞬时沉降为主;直线 BC 以主固结沉降为 主;直线 CD 以次固结沉降为主,见图 2。

图 2 $s = \lg t$ 曲线示意图

3)按某一时间间隔△*T*得到沉降序列*s*₁, *s*₂,...,*s*_n(*s*_n 为时间为 *n*△*T* 时的沉降),...。 当 *t*→∞时,*s*_n=*s*_n-1。根据此原理,用图 2 中 直线段 *AB*、*BC*、*CD* 中的数据,作 *s*_n⁻*s*_n-1关 系曲线图,这些点大致呈三条直线状,以这些 点可作三条直线,分别交与坐标轴成 45 度角 的直线,可得图 3 中的 *A* 点、*B* 点、*C* 点。其中:

图 3 三模式预测沉降示意图

A 点为瞬时沉降的预测值; B 点为主固结沉降的预测值; C 点为次固结沉降的预测。必须注意的是:在预测时对一些相关性较差的点应注意舍去,否则在作图时会产生较大的误差。

1.4 ds/dt法

根据沉降观测资料进行整理与分析,取填 筑到位后进入预压期的沉降速率 ds/dt 为纵 坐标,取相应时间的累积沉降量 s 为横坐标, 绘制(ds/dt)⁻s 曲线。根据次固结沉降为主 固结沉降基本完成后由于土粒骨架蠕变产生 的变形,可分辨出次固结沉降发生段的相应不 同斜率的两条直线,分别相交于坐标横轴,得 次固结沉降及最终沉降。图 4 为广珠准高速铁 路软土路堤试验段 3[#]断面实测沉降的预测,直 线段 AB 交坐标横轴值为主固结沉降值 s_{∞} 。

图 4 $3^{\#}$ 断面 ds/dt 法预测沉降示意图

2 工程实例

2.1 工程概况^[8]

广(州)珠(海)准高速铁路及珠海港支线 穿越广泛沉积第四系松软地层的珠江三角洲 平原地带,全线软土路堤长达50.3 km。软土 试验路堤位于珠海斗门县白蕉镇,北距斗门干 道700 m 左右,南邻通往新白蕉镇公路约 200 m。试验路堤范围选择在 DK122 + 366.02 ~ + 690 的直线地段,路堤长 323.98 m,路基面宽12 m,设计路堤高约 6.4 m(含预压土高1.4 m)。试验工作于 1995 年 11 月开始,1996 年 10 月完成预压土填筑, 在预压荷载作用下观测至 1997 年 12 月,历时 2 年零 2 个月。

试验路堤地处三角州平原地区,地势平坦, 场地及周围遍布渔塘、稻田。地质纵断面表明, 地层土质分布较均匀,层位稳定。其地层上部为 第四系近代滨海相特征显著的海相混合沉积的 松软层,下部为寒武系八村群砂页岩。

试验断面土层物理力学指标统计见表 1, 试验断面位置及处理方式见表 2^①。

2.2 计算结果分析

基于本文所述的方法,对广珠准高速铁路 软土试验路堤塑料排水板处理段的实测沉降 资料进行分析,结果见表3。

从表³可知,ds/dt 法得出的次固结沉降 量值最大,其值为 390~483 mm;钱⁻王法次 之,其值为266~385 mm;三模式法较小,其

深度 土层 含水量 重度 孔隙比 塑性 液性 压缩 竖向固 径向固 固括<														
h/m $w/\%$ $\gamma/(kN \cdot m^{-3})$ e I_p I_L Es/MPa $(10^{-3}cm^2 \cdot s^{-1})$ $(10^{-3}cm^2 \cdot s^{-1})$ kPa (\circ) kPa (\circ) $0\sim14$ $\% R f_h \pm$ 54.50 16.7 1.501 23.9 1.34 1.79 1.385 1.930 15.1 17.7 8.86 3.56 $4\sim26$ $\% R$ 64.53 16.1 1.823 33.7 1.20 1.29 1.183 1.234 11.0 14.4 7.92 1.28 $26\sim43$ $\% R$ 51.10 16.6 1.600 26.0 1.12 1.92 4.545 32.0 11.9 11.0 2.71	深度	土层	含水量	重度	孔隙比	塑性	液性	压缩	竖向固	径向固	固结	快剪	快	剪
h/m $w/\%$ $\gamma/(kN \cdot m^{-3})$ e I_p I_L Es/MPa $(10^{-3}cm^2 \cdot s^{-1})$ $(10^{-3}cm^2 \cdot s^{-1})$ kPa $(^{\circ})$ kPa $(^{\circ})$ $0 \sim 14$ $\frac{3}{kL}$ 54.50 16.7 1.501 23.9 1.34 1.79 1.385 1.930 15.1 17.7 8.86 3.56 $.4 \sim 26$ $\frac{3}{k}$ 61.1 1.823 33.7 1.20 1.183 1.234 11.0 14.4 7.92 1.23 $.6 \sim 43$ $\frac{3}{k}$ 51.10 16.6 1.600 26.0 1.12 1.92 4.545 32.0 11.9 11.0 2.71						指剱	指奴	快重	后示奴 $C_v/$	后杀奴 $C_{\rm h}$	$C_{\rm cu}$	$\varphi_{cu}/$	$C_{\rm u}$	$\varphi_{\rm u}/$
次泥质 粘土 54.50 16.7 1.501 23.9 1.34 1.79 1.385 1.930 15.1 17.7 8.86 3.56 .4~26 淤泥 64.53 16.1 1.823 33.7 1.20 1.29 1.183 1.234 11.0 14.4 7.92 1.23 .6~43 淤泥 51.10 16.6 1.600 26.0 1.12 1.92 4.545 32.0 11.9 11.0 2.7	h/m		w/%	$\gamma/(kN \cdot m^{-3})$	е	$I_{\rm p}$	I_{L}	Es/MPa	$(10^{-3} \text{cm}^2 \cdot \text{s}^{-1})$	$(10^{-3} \text{cm}^2 \cdot \text{s}^{-1})$	kPa	$(^{\circ})$	kPa	(°)
14~26 淤泥 64.53 16.1 1.823 33.7 1.29 1.183 1.234 11.0 14.4 7.92 1.23 26~43 淤泥 51.10 16.6 1.600 26.0 1.12 1.92 4.545 32.0 11.9 11.0 2.73	0 ~ 14	淤泥质 粘土	54.50	16.7	1.501	23.9	1.34	1.79	1.385	1.930	15.1	17.7	8.86	3.50
26~43 淤泥 51.10 16.6 1.600 26.0 1.12 1.92 4.545 32.0 11.9 11.0 2.71	$14 \sim 26$	淤泥	64.53	16.1	1.823	33.7	1.20	1.29	1.183	1.234	11.0	14.4	7.92	1.23
	$26 \sim 43$	淤泥	51.10	16.6	1.600	26.0	1.12	1.92	4.545		32.0	11.9	11.0	2.71

表1 试验断面土层物理力学指标统计

①王 祥·广珠准高速铁路软土路基填筑试验塑料排水板处理段的沉降分析·铁路地质与路基,2000(4):19~24

		• •		
断面号	断面位置	中心实际填高 H/m	埋沉降板处软土厚度 d/m	处 理 方 式
3#	$DK122 + 470 \sim 510$	8.54	33.5	二层土工布,塑料排水板深 20 m,间距 1.2 m
4 #	$DK122 + 510 \sim 555$	8.26	35.9	二层土工布, 塑料排水板深 20 m , 间距 1.0 m
5 #	$DK122 + 555 \sim 600$	8.38	40.2	三层土工布, 塑料排水板深 22 m , 间距 1.0 m
6#	DK122+600~645	8.05	38.0	一层土工布及 ⁵ m(宽) ^{×2} m(高)反压护道,排水板 深 ²⁰ m,反压护道下排水板深 ¹⁶ m,间距 ^{1.0} m
7'# I	$DK122 + 645 \sim 667.5$	5 7.81	31.4	二层土工格栅,塑料排水板深 20 m,间距 1.0 m
7 [#] 1	$DK122 + 667.5 \sim 690$	0 8.23	31.4	二层土工网, 塑料排水板深 20 m , 间距 1.0 m

表 2 试验断面位置及处理方式

注:中心实际填高含沉降

值为 $122 \sim 213 \text{ mm}$ 。而规范法得出的量值普 遍偏小, 仅为10 cm左右, 这可能是由于计算时 采用的次固结系数偏小或反映次固结的 ^β值 偏小的缘故; 规范法 ² 中次固结沉降量值大小 随不同断面里程的变化幅度较小, 这是因为相 近里程的土层含水量变化不大, 而次固结系数 又假定与含水量正相关有关。三模式法由于 在其作图的过程中有一定的随意性, 因此用该 方法进行计算时宜注意剔除相关性较差的点; 相比而言, 钱-王法和 ds/dt 法, 由于在作图中 用及所有数据, 其可信度较高, 但往往需要较 长的观测时间。因此在进行次固结沉降时, 宜 根据工程实际, 选择不同的计算方法。

表 3 各种方法计算的沉降分析(3[#]~7[#]断面)

		3 #	4 #	5#	6 #	7′ [#]	7 #
	s∞/mm	$3 \ 012$	2768	2684	2518	2685	2 580
1	$s_{\rm s}/{ m mm}$	334	337	385	318	270	266
	$(s_s/s_\infty)/\%$	11.1	12.2	14.3	12.6	10.1	10.3
	s_{∞}/mm	$3\ 012$	2768	$2\ 684$	$2\ 518$	$2\ 685$	2580
1	$s_{\rm s}/{ m mm}$	104	111	116	115	111	118
2	$(s_{\rm s}/s_{\infty})/\%$	3.4	4.0	4.3	4.6	4.1	4.6
9	$s_{\rm s}/{ m mm}$	126	131	134	112	107	115
	$(s_{\rm s}/s_{\infty})/\%$	ó 4.2	4.7	5.0	4.4	4.0	4.5
	$_{s\infty}/_{ m mm}$	2978	2 672	2744	2644	2568	2547
3	$s_{\rm s}/{ m mm}$	159	137	164	213	122	140
	$(s_{\rm s}/s_{\infty})/\%$	5.3	5.1	6.0	8.1	4.8	5.5
	$_{s\infty}/_{ m mm}$	3 048	2727	2667	2541	$2\ 634$	2657
4	s_{s}/mm	435	390	483	421	465	413
	$(s_{\rm s}/s_{\infty})/\%$	16.6	14.3	18.1	16.6	17.6	15.5

- 注:1)①、②、③、④分别代表钱-王法、规范法、三模式法 和 ds/dt法;
 - 2) s_s、s_∞分别表示次固结沉降和最终沉降;
 - 3)钱-王法和规范法的最终沉降值为实测沉降经双 曲线法推算而得^[9];
 - 4)规范法中计算次固结的时间以 20 年计;
 - 5)规范法 2 中计算次固结沉降的压缩土层厚度按 《建筑地基基础设计规范》(GBJ7-89)取

图 5 为堆载高度 H 和软土厚度 d 与次固 结沉降量 s_s 占最终沉降量 s∞比值关系曲线。 从图 5 中可知,无论用何种方法计算的次固结 沉降,其量值大致与软土深度及堆载高度成正 相关。

图 5 H和d与s_s/s∞比值关系曲线

综合几种方法推算的次固结沉降量占最 终沉降量的比例为 10 % 左右,这个比例的沉 降值还是比较大的。其他工程中亦大致测得 该比值^[9]。因此,在珠江三角洲的深厚软土 上修建各种建筑物,不计及次固结沉降是不合 适的。研究表明:通过加大堆载量和加长堆载 的持荷时间,可降低次固结系数并加快次固结 沉降的发生^[10],且通过超载预压可减少使用 荷载下的次固结沉降^[11]。

3 结 论

1)通过对次固结沉降的分析可知,软土较 (下转第 233 页) 弱进行补强计算和桩的设计,才会有最经济的 复合地基。

6)在上部荷载作用下,地基土的压缩变形随各土层模量不同而各异。由于复合桩的植入,其压缩模量得到极大提高。因此,尽管原 土层间模量有些差异,相比较于复合桩植入后的复合模量,这种差异可以忽略而取用整体复 合模量。压缩模量应按实际应力状态下取值。

7)根据工程经验和试验研究资料,建议褥 垫层采用 100~200 mm 厚的小碎石满铺而 成,并无须过高的密实度,以保证褥垫层的调 节能力。同时建议对加褥垫层后的复合地基 承载力公式中桩承载部分进行适度的折减,例 如考虑 0.8~1.0 的折减。

8)关于复合地基承载力基本值,按相对变 形值 $s/b=0.004\sim0.015$ 确定的问题。笔者 认为,复合地基毕竟不是桩基,其破坏或失效 与普通地基土均多是由于上部荷载过大后基 底进入塑性区过多而导致土体剪切破坏,变形 超限。从大量的桩土复合地基变形资料看,建 筑物的沉降量都很小,而与普通粘土地基上的 建筑物沉降相比要小得多。因此,在确定基本 承载力时按 s/b=0.004 所对应的荷载值过 于保守。建议至少按 s/b≥0.008 所对应的 荷载值确定。

由于半刚性桩是由注入地下的胶凝材料 与地下土混合而成,因此,其强度及其它特性 是有地域性的。本文资料及立论观点立足于 内陆平原地区,对于山区及沿海土层情况当另 论。

收稿日期 2002-04-08

(上接第 194 页)

深厚的珠江三角洲地区有一定程度的次固结 沉降存在,其值占最终沉降值的比例为 10 % 左右。对于工后沉降要求较高的工程,应该考 虑次固结沉降,否则易产生较大的误差,甚至 造成工程事故。次固结沉降量近似与软土厚 度及堆载高度正相关。

2)为了满足较高标准的工后沉降要求,可 通过加大堆载量及延长堆载时间来降低次固 结系数、并加快次固结沉降的发生,通过超载 预压可减少使用荷载下的次固结沉降。

致谢:参加广珠准高速铁路软土路堤试验研究的 人员还有杜文山、李小和、陈明德、陈 占、吴 东、李 燕君、肖汉英、杨正发等,对他们的辛勤工作一并表示 衷心的感谢!

参考文献

- 1 钱家欢,殷宗泽.土工原理与计算(第二版).北京: 中国水利水电出版社,1996.188~189
- 2 王盛源·饱和粘性土主固结与次固结变形分析·岩

土工程学报,1992,14(5):70~75

- 3 孙更生,郑大同.软土地基与地下工程.北京:中 国建筑工业出版社,1984.56~59
- 4 JTJ⁰¹⁷⁻⁹⁶ 公路软土地基路堤设计与施工技术 规范
- 5 Akira Asaoka · Observational procedure of settlement prediction · Soils and Foundations, 18(4):88~101
- 6 蔡体楞主编·杭甬高速公路软土地基处理·杭州: 杭州出版社,1998.151~152
- 7 倪一鸿.公路荷载作用下软土地基次固结.公路, 1999(10):56~61
- 8 杜文山,李小和等,深厚层软土路堤控制后期沉降 加固方法的研究,软土地基试验研究文集,武汉: 中国地质大学出版社,2001.313~343
- 9 周虎鑫,陈晋国,陈荣生,强夯加固在高填方机场 道槽施工中的应用分析,公路,1995(10):5~8
- 10 朱向荣等.超载预压加固宁波机场场道软基.岩 土工程学报,1992,14(增刊):30~38.
- 11 地基处理手册编委会.地基处理手册(第二版).
 北京:中国建筑工业出版社,2000.59~60

收稿日期:2002-04-04