Geotechnical Engineering Technique

文章编号:1007-2993(2003)01-0034-05

软土次固结特性试验研究

于新豹 刘松玉 缪林昌(东南大学岩土工程研究所,南京 210096)

【摘 要】 为了研究软土的次固结特性,进行了一维的固结蠕变压缩试验,分析了次固结对固结过程的影响。把饱和粘性土骨架视为粘弹性体,提出了一种划分主次固结的方法,并以此分析了次固结的作用。

【关键词】 软土,主固结,次固结,粘弹性体

【中图分类号】 TU411

Research on Secondary Consolidation of Soft Clay

[Abstract] In order to study the properties of soft soil, the 1-D consolidation-creep test has been completed. The effect of the secondary consolidation on the consolidation process is analyzed. Treating the saturated soft clay as viscoelastic body, a new method of separation of the secondary consolidation and primary consolidation is proposed. Some interesting conclusions concerning the effect of secondary consolidation are drawn from the test results.

[Keywords] soft soil; primary consolidation; secondary consolidation; viscoelastic body

0 引 言

在我国东部和东南部的广大沿海地区分 布了大面积的软土。这些软土大都是第四世 纪以来形成的饱和软粘土。其成因有海积相 沉积、湖泊洼地相沉积、三角洲相沉积、沟谷相 沉积等。软土具有含水量高、孔隙比大,压缩 性高、承载力低、流变性等工程特点。连云港 地区广泛分布海相淤泥、淤泥质粘土。该土层 具有高含水量、高液塑限、低密度、低强度、低 透水性、高灵敏度等特点。由于软土具有明显 的次固结沉降和流变特性,因此易产生诸如, 施工工期延长,工后沉降难以控制等一系列的 问题。

1 次固结

在固结后期,当孔隙水压力基本消散后, 实测值与理论值的差距随时间发展越来越大。 人们把这种固结的后期,实际变形量偏离理论 估算值并随时间发展的现象称这为次固结。 笔者把由土骨架的变形而造成的土体变形称 之为次固结。

关于次固结的形成机理,目前没有形成统 一的认识。泰勒(Taylor 等, 1940) 年提出: 实 际上,固结试验中的次固结压缩是粘土结构的 塑性调整。由于这种调整过程是个时间过程。 因而又称之为时间效应。陈宗基(1958)认为。 造成次固结的变形的时间效应的机械作用有 两个主要过程,即:因剪应力产生的滞流和因 静水压力而产生的体积蠕变。由于两个过程 产生的时间效应还可能受第三过程的影响,即 因固结和剪切变形而产生的土骨架的硬化。 所有这些过程都对时间效应的产生起着重要 作用.每一过程起作用时的大小主要看土骨架 本身的性质、外荷的大小及粘土层和粘土试样 的边界条件而定。上述观点认为次固结由粘 滞蠕变引起的,比较公认的观点是次固结是由 土骨架变形引起的。

作者简介:于新豹,男,1978年生,汉族,山东临沂人,在读硕士研究生。2000年毕业于长安大学土木工程专业。 现研究方向:连云港软土的工程特性。E-mail:yuxinbao@yahoo.com_cn

德[•]杨(De Jong 等, 1965) 通过对球状粘土 试样的等压固结试验的资料分析后指出:关于 次固结的变形机理,还存在着这样的一种可能 性——次固结是更为细小孔隙网络中水排出 造成的固结。 2.1 试验方法

笔者取了四种深度原状的软土, 各深度的 土的物理力学性质指标见表 1。试验仪器: 固 结仪。设计加荷等级 100 kPa, 200 kPa, 400 kPa, 600 kPa, 800 kPa, 1 000 kPa。

2 固结蠕变试验

表 1 各土层的物理力学性质表

深度/m	颜色	含水量 w 🎋	密度 $\rho / (g^{\circ} cm^{-3})$	饱和度 Sr 🆄	孔隙比	液限 w _L /%	塑限 w p 1%	塑性指数 I_{p}
2	黄褐色	50. 98	1. 76	100	1. 37	68. 676	29. 747	38. 929
4	青灰色	67. 93	1. 581	97. 25	1. 921	73. 866	47. 489	26. 377
8	青灰色	60.14	1. 635	97.66	1. 693	69. 696	28. 704	40. 992
10	青灰色	51.06	1. 7009	97. 35	1.44	56. 347	33. 581	22. 766

2.2 试验结果分析

各深度的应变随时间关系见图 1,图 2,图 3,图 4(取 4 d 的数据)。

2.3 各级荷载作用下的主次固结

各级荷载作用下的变形(百分表读数)时 间对数曲线见图 5。根据太沙基理论,变形时 间对数曲线在初始阶段为一曲线,而后会出现 反弯点,后面的的变形主要为次固结变形。图

图 4 10 m 深度下的应变-时间曲线

5 中 100 kPa 对应的曲线:经过分析可以看出 在低的应力水平下,曲线有较大曲率,主固结 与次固结区分明显,当在800 kPa时,基本上变 成直线段。800 kPa、1 000 kPa下的变形时间 对数曲线(一个月),见图6图7。在此应力水 平下,图形发生了较大的变化。无明显的曲率 变化点,无明显的主固结阶直线段,不会出现 反弯点。此时,已无法区分主次固结。这无法 用太沙基理论来解释。之所以出现这种情况 是由于以下两个原因。

图 7 一个月的变形时间对数关系图(800 kPa)

1) 次固结作用的影响, 主固结过程中同时 存在着次固结。由于在 800 kPa, 1 000 kPa 荷 载级别是其加荷比 $\Delta_p/p=1/3$, $\Delta_p/p=1/4$ 。 其荷载增量较小, 在 Δ_p 作用下的固结变形量 就比较小。而次固结变形速率却受加荷比的 影响不大, 这样次固结变形就在总变形中占有 较大的份量^[1], 从而模糊了主固结变形, 使得 固结曲线偏离了理论曲线。

2) 土体被压密, 土的渗透性降低。100 kPa 下土的主固结系数为 0.343 799×10⁻³ cm²/s, 在 1 000 kPa下土的主固结系数为 0. 040 996× 10^{-3} cm² k。这样孔隙水消散就随荷载的增大而变的越来越缓慢。

2.4 次固结系数

布斯曼(Buisman, 1936)通过分析长期 变形观察资料发现,在次固结阶段变形与时间 对数间成线性关系,并由此引出了次固结系 数。这种经验关系被广泛采纳。另有一些学 者认为,此种线性关系不可能无限制的延伸, 到了一定的时间变形终究要稳定下来。本文 所作的试验中,就发现了这种现象(见图 6)。 总的来说,多数学者认为至少在两个时间对数 周期内,该线性关系是有效的。关于次固结系 数的定义,常有以下几种定义:麦斯瑞(Mesri, 1973)、拉德和福特(Ladd and Foott, 1977) 等:

 $S_{\alpha} = \Delta S \, \Delta \log t \tag{1}$

$$C_a = \Delta e \, \Delta \log t \tag{2}$$

$$\varepsilon_a = C_\alpha / (1+e) \tag{3}$$

$$\varepsilon_{a0} = C_{\alpha} / (1 + e_0) \tag{4}$$

$$\varepsilon_{ai} = C_{\alpha} / (1 + e_i) \tag{5}$$

$$C_a = \Delta \varepsilon / \Delta \log t \tag{6}$$

式中: t 为时间, S 为沉降, ε 为应变, e 为孔隙 比, e_i 为开始测 C_a 时的空隙比, e_0 为初始空 隙比。本文采用 C_a 的计算方法。

各种深度下的次固结系数和应力的关系 见图 8。由图 8 可看出,在 2 m 的深度,次固 结系数随应力的增加而变大,在 400 kPa 到达 最大值然后减小;在4 m 的深度,次固结系数, 在较低的应力水平下比较大,随着应力的增 大,其值变化不大;在 8 m 的深度,基本和4 m 深度出的变化趋势相同,不过在 400 kPa 处次 固结系数降低较多;在 10 m 深度,低于 800 kPa 水平下,次固结系数变化不大,1 000 kPa 时突然增大。

3 主次固结划分

主次固结的划分对实际工程有着重要的意 义。关于主次固结的划分,卡萨格兰德(Casagrande, 1936) 曾经建议作图法进行(见图 9)。 根据作图法可以确定主次固结的分界时间, 这 一方法被理论工作者和广大的工程师门广为采 纳。然而这一方法只是从几何上粗略给定, 含 有一定的主观因素, 并且受时间零点的影响。 其并不具有明确的物理意义。下面从土本构关 系, 推导如何确定划分主次固结变形。

图 9 Casgrande 法确定主固 结(8 m 深度 100 kPa)

大多数的学者认为主固结和次固结是同时存在的,在主固结阶段主固结占主导地位。 随着孔隙水压力的消散,主固结逐渐完成,土 体的变形以次固结变形为主。这里主固结和 次固结的划分,指的是次固结占主导地位的时候,就认为主固结已经完成。

饱和粘土在压缩过程中可以表现出弹粘 塑性的诸多方面的力学性质。钱家欢^[3]和王 盛源^[3]建议用蠕变度函数式(7)来描述粘土的 骨架变形特性。

$$\delta(t,\tau) = a_0 + \sum_{1}^{n} a_n \left[1 - e^{-\gamma_n(t-\tau)} \right] \quad (7)$$

选取图 10 的三单元力学模型,且取 $\tau=0$ 时 施加荷载,则式(7)可化简为下式:

$$\widetilde{\mathfrak{q}}(t,\tau) = \frac{\mathfrak{e}(t)}{\sigma'} = a_0 + a_1 [1 - e^{-\gamma_1(t-\tau)}] \quad (8)$$

式中: σ 即为骨架应力; $\varepsilon(t)$ 为骨架应变; a_0 , a_1 和 γ_1 分别为骨架变形特性常数, 或称流变 常数。经过推导可以得到下式:

而土骨架中的有效应力很难准确测定,当渗水 固结完成后,即主固结结束后,此时的孔隙水 压力已经完全消散,所施加的荷载已由土骨架 所承担,总应力等于有效应力,这时式(9)才能 适用。

如将式(9)改写为: $lg\left[\frac{\epsilon(\infty) - \epsilon(t)}{q}\right] = lg a_1 - 0.434 \gamma_1 t$ (10) 式中: *q* 为所施加的外荷, $\epsilon(\infty)$ 为最终应变 量, 由此可以将固结蠕变试验中的荷载资料和 应变资料来绘制 $lg\left[\frac{\epsilon(\infty) - \epsilon(t)}{q}\right]$ 与 *t* 的关 系曲线。当主固结完成时, *q* 即等于有效应 力, 因此在次固结阶段应该为直线段。因此当 出现直线段的时候, 就可以认为主固结已经完 成, 次固结开始。图 11 表示按该法确定主固 结时间 *t* 100 为 100 min, 而按 Casgrande 法确定 的时间 *t* 100 为 64 min。

由上面的分析过,随着应力的增大,由于 次固结的影响使得曲线的形状发生变化。为 了分析这种影响,可以用 C_a / $\Delta_{e_{100}}$ 来表征主次 固结的相对大小。 C_a 为次固结系数, $\Delta_{e_{100}}$ 为 由 e-lgt 曲线上读取的主固结阶段孔隙比变 化量,显然其中也包括由次固结所产生的在主 固结阶段的空隙比改变。用上述方法确定 t_{100} ,求得 $\Delta_{e_{100}}$ 。各深度下 C_a / $\Delta_{e_{100}}$ 与应力的 关系图见图 12。

图 12 各深度土层的 C_a / △ e₁₀₀ 与应力的关系

参数 C_a / $\Delta_{e_{100}}$ 可以反映次主固结的相对 大小, 在某种程度上能够次固结在主固结过程 中其作用的大小。8 m 下的 C_a / $\Delta_{e_{100}}$ 开始时 值较小, 反映出次时次固结起的作用较小, 而 在 600 kPa, 800 kPa 下其值增大很快, 因而在 600 kPa, 800 kPa 下的变形和时间的对数曲线 呈现出图 5 的曲线, 可以发现参数 C_a / $\Delta_{e_{100}}$ 值 的大小和曲线的形状有很好对应关系, C_a / $\Delta_{e_{100}}$ 值越大曲线就越平缓, 趋近于直线。参 数 C_a / $\Delta_{e_{100}}$ 是随着应力大小不同而改变的。 总休趋势是先增大, 200 kPa 下开始减小, 而 后增大, 随深度的不同, 开始增大的值不同, 到 1 000 kPa 时到最大。 4 结 论

为了研究次固结对沉降的影响,进行了一 维固结蠕变试验,进行了长时间的观察,一般 一级荷载的稳定时间需要七八天,最后一级一 个月,共历时两个多月。

次固结的存在会影响变形(或孔隙比)
与时间对数曲线的形状,当这种影响较大时,曲线的形状与太沙基理论曲线有很大的不同。
本文对这种影响从理论上进行了解释。并以参数 C_a /Δe₁₀₀ 分析了这种影响。

2) 把饱和粘性土体的骨架视作粘弹性体, 空隙流体服从达西定律,用此理论得出了一种 划分主次固结的方法,并用此计算了 *t*100,从 而能够计算出 *Ca* /△*e*100。

关于次固结的机理比较复杂,次固结系数 的影响因素较多,如固结压力,孔隙比,荷载增 量比等。本文仅从加荷的应力水平进行分析, 这方面的研究还有待加强。

参考文献

- 赵为民.加荷比对土体压缩、流变性影响的研究及 一维弹粘塑性分析.[学位论文]:河海大学岩土工 程研究所,1998.
- 2 钱家欢. 粘弹性理论在土力学方面的应用. 高等学校自然科学学报(土木、建筑、水利版) 1966, 2(1): 73.
- 3 王盛源. 饱和多孔介质理论,中国科学(A辑), 1989-7,(7):739~748.

收稿日期:2002-10-25

(上接第18页)

参考文献

1 谢春庆, 刘汉超. 西南机场建设中的主要工程地质

问题. 地质灾害与环境保护, 2001, 12(2); 32~35

2 蒋建良. 杭州新机场工程地质条件及地基处理试验. 水文地质工程地质, 2001, 28(4): 59~62

收稿日期:2002-10-18