Application of Neural Network in Predicting the Strength of the Steel Fiber Reinforced Concrete at Minus Temperature
-
摘要: 利用BP网络对负温钢纤维混凝土的实验所得到的抗压强度、抗折强度、抗拉强度、抗剪强度进行了仿真预测。误差检测表明,BP网络可成功地建立非线性的强度模型,准确地预测负温钢纤维混凝土的强度,表明了神经网络在负温钢纤维混凝土强度预测中的可行性。Abstract: The BP neural network is established to predict the compressive strength/the flexural strength, the tensile strength and the shear strength of steel fiber reinforced concrete at minus temperature. The checking results show that the BP network could predict the strengths successfully by establishing the appropriate non-linear model and studying.
-
Key words:
- neural network /
- minus temperature /
- steel fiber reinforced concrete /
- stength /
- prediction
计量
- 文章访问数: 26
- HTML全文浏览量: 4
- PDF下载量: 6
- 被引次数: 0