Correlation analysis between subgrade compaction state and rolling dynamic soil pressure
-
摘要: 路基压实状态与碾压动土压力密切相关,为此开展了土压力传感器室内标定试验。标定试验显示砂标系数与厂家标定系数相差65%以上,论证了根据传感器的实际工程状态选择相应介质进行标定试验的必要性。在此基础上明晰了标定系数与压实状态的关系,建立了标定系数–砂土介质压实度关系曲线,提出了标定系数与介质压实度关系的归一化方程。路基碾压土压力的实测数据显示,按实际介质标定系数修正后的实测值与Boussinesq解理论值的偏差更小,较厂家标定系数下的实测值平均降低29.4%。Abstract: To ensure subgrade compaction quality, the correlation between compaction state and rolling dynamic soil pressure was investigated. An indoor calibration test of soil pressure sensors was conducted, revealing a difference of over 65% between the sand calibration coefficient and the manufacturer's coefficient. This emphasized the necessity of selecting the medium based on actual engineering conditions for calibration. The relationship between the calibration coefficient and compaction state was clarified, leading to the establishment of a calibration coefficient - sand compaction degree curve and a normalization equation. Field measurements show that correcting measured values using actual medium calibration coefficients reduces the deviation from the Boussinesq theoretical solution by an average of 29.4%, compared to using the manufacturer’s coefficients.
-
Key words:
- highway /
- subgrade compaction /
- soil pressure sensor /
- calibration coefficient /
- compaction state
-
表 1 土压力传感器参数
序号 传感器编号 直径/mm 厚度/mm 量程/MPa 1 18356 16 4.8 0.3 2 21683 16 4.8 0.3 3 21684 16 4.8 0.3 表 2 压实度工况
传感器编号 压实度1
/%压实度2
/%压实度3
/%压实度4
/%压实度5
/%18356 89.01 92.88 94.52 96.23 97.99 21683 89.27 92.35 93.15 94.80 96.51 21684 89.25 91.53 93.13 94.78 96.48 表 3 加载–卸载循环工况
加载阶段 卸载阶段 序号 应力/MPa 试验力/kN 序号 应力/MPa 试验力/kN 1 0.03 0.53 11 0.27 4.77 2 0.06 1.06 12 0.24 4.24 3 0.09 1.59 13 0.21 3.71 4 0.12 2.12 14 0.18 3.18 5 0.15 2.65 15 0.15 2.65 6 0.18 3.18 16 0.12 2.12 7 0.21 3.71 17 0.09 1.59 8 0.24 4.24 18 0.06 1.06 9 0.27 4.77 19 0.03 0.53 10 0.3 5.3 20 0 0 表 4 砂标与厂家标定系数对比
传感器编号 厂家标定系数
/(MPa·µε−1)砂标系数
/(MPa·µε−1)偏差
/%18356 1.80×10−4 5.88×10−4 227 21683 2.29×10−4 4.20×10−4 83 21684 2.82×10−4 4.67×10−4 67 表 5 标定系数与压实度拟合曲线参数
传感器编号 A1 A2 K0 p R2 18356 5.72×10−4 7.43×10−4 91.99 70.56 0.99 21683 4.01×10−4 5.20×10−4 91.49 68.70 0.99 21684 4.55×10−4 5.80×10−4 91.79 77.49 0.99 -
[1] 夏志远, 王 率, 任延斌. 某山区高填方路基边坡失稳机制分析研究[J]. 岩土工程技术,2022,36(5):371-376. (XIA Z Y, WANG S, REN Y B. Analysis and research on instability and sliding mechanism of high fill subgrade slope in a mountainous area[J]. Geotechnical Engineering Technique,2022,36(5):371-376. (in Chinese) doi: 10.3969/j.issn.1007-2993.2022.05.005XIA Z Y, WANG S, REN Y B. Analysis and research on instability and sliding mechanism of high fill subgrade slope in a mountainous area[J]. Geotechnical Engineering Technique, 2022, 36(5): 371-376. (in Chinese) doi: 10.3969/j.issn.1007-2993.2022.05.005 [2] 魏佩顺. 斜坡路基边坡中路堤位移及应力影响参数研究[J]. 岩土工程技术,2019,33(3):162-165,177. (WEI P S. Study on influence parameters of embankment displacement and stress in slope subgrade slope[J]. Geotechnical Engineering Technique,2019,33(3):162-165,177. (in Chinese) doi: 10.3969/j.issn.1007-2993.2019.03.009WEI P S. Study on influence parameters of embankment displacement and stress in slope subgrade slope[J]. Geotechnical Engineering Technique, 2019, 33(3): 162-165,177. (in Chinese) doi: 10.3969/j.issn.1007-2993.2019.03.009 [3] 李 晋, 姜 鹏, 李天宇, 等. 液压夯补强路基动力响应现场试验研究[J]. 公路交通科技,2022,39(9):67-74. (LI J, JIANG P, LI T Y, et al. In-situ experimental study on dynamic response of subgrade reinforced by hydraulic impactor[J]. Journal of Highway and Transportation Research and Development,2022,39(9):67-74. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.09.009LI J, JIANG P, LI T Y, et al. In-situ experimental study on dynamic response of subgrade reinforced by hydraulic impactor[J]. Journal of Highway and Transportation Research and Development, 2022, 39(9): 67-74. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.09.009 [4] 李国维, 米帅奇, 仇红超, 等. 深埋盖板涵路基填土应力场分布特征试验研究[J]. 岩石力学与工程学报,2022,41(11):2311-2319. (LI G W, MI S Q, QIU H C, et al. Experimental study on stress field distribution characteristics of slab-culvert under high embankments[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(11):2311-2319. (in Chinese)LI G W, MI S Q, QIU H C, et al. Experimental study on stress field distribution characteristics of slab-culvert under high embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(11): 2311-2319. (in Chinese) [5] ZHANG D, WEI J, WEI P, et al. An experimental investigation of mechanical properties within geosynthetic-reinforced and pile-supported embankments[C]//Proceedings of the 3rd International Conference on Railway Engineering: Construction and Maintenance of Railway Infrastructure in Complex Environment. Beijing, 2014: 371-376. [6] 于友朋. 农田无线土壤压力传感器及监测系统研究与开发[D]. 哈尔滨: 东北农业大学, 2017. (YU Y P. Research and development of farmland wireless soil pressure sensor and monitoring system[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)YU Y P. Research and development of farmland wireless soil pressure sensor and monitoring system[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese) [7] 徐镜先. 农田多向无线土压力传感器及监测系统的研究[D]. 哈尔滨: 东北农业大学, 2020. (XU J X. Research of farmland multidirectional wireless earth pressure sensor and monitoring system[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese)XU J X. Research of farmland multidirectional wireless earth pressure sensor and monitoring system[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese) [8] 梁 雨, 梅国雄, 蒋明杰, 等. 土压力盒标定试验研究及工程应用[J]. 广西大学学报(自然科学版),2021,46(2):245-252. (LIANG Y, MEI G X, JIANG M J, et al. Investigation on calibration of earth pressure cell and its on-site application[J]. Journal of Guangxi University (Natural Science Edition),2021,46(2):245-252. (in Chinese)LIANG Y, MEI G X, JIANG M J, et al. Investigation on calibration of earth pressure cell and its on-site application[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(2): 245-252. (in Chinese) [9] 李 升, 周 琳, 施尚伟, 等. 一种提高电阻应变式土压力盒灵敏度的方法[J]. 建筑结构,2022,52(S1):2946-2950. (LI S, ZHOU L, SHI S W, et al. A method for improving sensitivity of the earth pressure cell of resistance strain type[J]. Building Structure,2022,52(S1):2946-2950. (in Chinese)LI S, ZHOU L, SHI S W, et al. A method for improving sensitivity of the earth pressure cell of resistance strain type[J]. Building Structure, 2022, 52(S1): 2946-2950. (in Chinese) [10] 李春林, 陈青春, 丁启朔. 用于土壤压实监测的土压力传感器标定[J]. 实验技术与管理,2010,27(4):63-66. (LI C L, CHEN Q C, DING Q S. Calibration of soil pressure sensors for soil compaction monitoring[J]. Experimental Technology and Management,2010,27(4):63-66. (in Chinese) doi: 10.3969/j.issn.1002-4956.2010.04.019LI C L, CHEN Q C, DING Q S. Calibration of soil pressure sensors for soil compaction monitoring[J]. Experimental Technology and Management, 2010, 27(4): 63-66. (in Chinese) doi: 10.3969/j.issn.1002-4956.2010.04.019 [11] 孔祥松, 许壮壮, 胡经尧, 等. 基于相似试验的土压力盒便捷标定方法[J]. 矿业研究与开发,2021,41(9):56-60. (KONG X S, XU Z Z, HU J Y, et al. Convenient calibration method of earth pressure cell based on similarity test[J]. Mining Research and Development,2021,41(9):56-60. (in Chinese)KONG X S, XU Z Z, HU J Y, et al. Convenient calibration method of earth pressure cell based on similarity test[J]. Mining Research and Development, 2021, 41(9): 56-60. (in Chinese) [12] 任连伟, 肖 扬, 顾红伟. 砂土介质中多类型土压力盒标定试验[J]. 河海大学学报(自然科学版),2016,44(2):155-159. (REN L W, XIAO Y, GU H W, et al. Experimental study on calibration tests of earth pressure cells in sand soil[J]. Journal of Hohai University (Natural Sciences),2016,44(2):155-159. (in Chinese)REN L W, XIAO Y, GU H W, et al. Experimental study on calibration tests of earth pressure cells in sand soil[J]. Journal of Hohai University (Natural Sciences), 2016, 44(2): 155-159. (in Chinese) [13] 简 筝, 赵国彦, 王 玺, 等. 砂土介质振弦式土压力盒标定试验[J]. 黄金科学技术,2020,28(4):541-549. (JIAN Z, ZHAO G Y, WANG X, et al. Calibration tests of vibrating wire earth pressure cells in sand soil[J]. Gold Science and Technology,2020,28(4):541-549. (in Chinese)JIAN Z, ZHAO G Y, WANG X, et al. Calibration tests of vibrating wire earth pressure cells in sand soil[J]. Gold Science and Technology, 2020, 28(4): 541-549. (in Chinese) [14] 蔡正银, 代志宇, 徐光明, 等. 离心模型试验中界面土压力盒标定方法研究[J]. 水利学报,2020,51(6):695-704. (CAI Z Y, DAI Z Y, XU G M, et al. Study on calibration method of interface soil pressure sensor in centrifugal model test[J]. Journal of Hydraulic Engineering,2020,51(6):695-704. (in Chinese)CAI Z Y, DAI Z Y, XU G M, et al. Study on calibration method of interface soil pressure sensor in centrifugal model test[J]. Journal of Hydraulic Engineering, 2020, 51(6): 695-704. (in Chinese) [15] 郭永兴, 张东生, 孟 汇, 等. 土壤介质对土压传感器测量准确度的影响研究[J]. 地下空间与工程学报,2014,10(2):369-373,384. (GUO Y X, ZHANG D S, MENG H, et al. Influence of earth medium on earth pressure sensor measurement[J]. Chinese Journal of Underground Space and Engineering,2014,10(2):369-373,384. (in Chinese)GUO Y X, ZHANG D S, MENG H, et al. Influence of earth medium on earth pressure sensor measurement[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(2): 369-373,384. (in Chinese) [16] 赵世永. 结构界面单膜电阻式微型土压力盒室内砂土标定方法研究[J]. 河南科学,2022,40(1):39-45. (ZHAO S Y. Laboratory sand calibration method of single membrane resistance miniature earth pressure cell set on the structural surface[J]. Henan Science,2022,40(1):39-45. (in Chinese) doi: 10.3969/j.issn.1004-3918.2022.01.006ZHAO S Y. Laboratory sand calibration method of single membrane resistance miniature earth pressure cell set on the structural surface[J]. Henan Science, 2022, 40(1): 39-45. (in Chinese) doi: 10.3969/j.issn.1004-3918.2022.01.006 [17] 曾 力, 鲁臻臻, 李明宇, 等. 温度影响下不同含水率细砂中土压力盒测试结果试验研究[J]. 力学与实践,2022,44(1):100-108. (ZENG L, LU Z Z, LI M Y, et al. Experimental study on test results of earth pressure cells buried in fine sand with different moisture content under the influence of temperature[J]. Mechanics in Engineering,2022,44(1):100-108. (in Chinese) doi: 10.6052/1000-0879-21-231ZENG L, LU Z Z, LI M Y, et al. Experimental study on test results of earth pressure cells buried in fine sand with different moisture content under the influence of temperature[J]. Mechanics in Engineering, 2022, 44(1): 100-108. (in Chinese) doi: 10.6052/1000-0879-21-231 [18] 贺红林, 许佳豪, 周战洪, 等. 压阻式压力传感器温度误差的插值补偿方法研究[J]. 电子测量与仪器学报,2021,35(12):1-7. (HE H L, XU J H, ZHOU Z H, et al. Research on interpolation compensation method for temperature error of piezo-resistive pressure sensor[J]. Journal of Electronic Measurement and Instrumentation,2021,35(12):1-7. (in Chinese)HE H L, XU J H, ZHOU Z H, et al. Research on interpolation compensation method for temperature error of piezo-resistive pressure sensor[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(12): 1-7. (in Chinese) -