留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地铁盾构隧道超小净距地段中隔墙加固效果分析

魏康林 朱禹 罗业华 严晓周 胥岚月 李洪斌 曾勇

魏康林, 朱禹, 罗业华, 严晓周, 胥岚月, 李洪斌, 曾勇. 地铁盾构隧道超小净距地段中隔墙加固效果分析[J]. 岩土工程技术, 2025, 39(1): 63-71. doi: 10.20265/j.cnki.issn.1007-2993.2023-0801
引用本文: 魏康林, 朱禹, 罗业华, 严晓周, 胥岚月, 李洪斌, 曾勇. 地铁盾构隧道超小净距地段中隔墙加固效果分析[J]. 岩土工程技术, 2025, 39(1): 63-71. doi: 10.20265/j.cnki.issn.1007-2993.2023-0801
Wei Kanglin, Zhu Yu, Luo Yehua, Yan Xiaozhou, Xu Lanyue, Li Hongbin, Zeng Yong. Reinforcement effect of middle partition wall in ultra-small spacing section of subway shield tunnel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 63-71. doi: 10.20265/j.cnki.issn.1007-2993.2023-0801
Citation: Wei Kanglin, Zhu Yu, Luo Yehua, Yan Xiaozhou, Xu Lanyue, Li Hongbin, Zeng Yong. Reinforcement effect of middle partition wall in ultra-small spacing section of subway shield tunnel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 63-71. doi: 10.20265/j.cnki.issn.1007-2993.2023-0801

地铁盾构隧道超小净距地段中隔墙加固效果分析

doi: 10.20265/j.cnki.issn.1007-2993.2023-0801
基金项目: 四川省自然科学基金项目(2022NSFSC1153);中交第四航务工程局有限公司委托课题(2022-019)
详细信息
    作者简介:

    魏康林,男,1977年生,硕士,教授级高级工程师。研究方向:岩土工程。E-mail: weikanglin@gzmtr.com

    通讯作者:

    曾 勇,男,1978年生,博士,副教授。研究方向:道路与铁道工程。E-mail: zengy@swjtu.edu.cn

  • 中图分类号: U455.43

Reinforcement effect of middle partition wall in ultra-small spacing section of subway shield tunnel

  • 摘要: 为了探明地铁盾构隧道超小净距地段中隔墙加固效果,依托广州地铁12号线大学城南停车场出入场线工程,利用FLAC 3D软件建立盾构隧道施工仿真模型,分析未加固与中隔墙加固情况下超小净距盾构隧道施工对周边岩土体及先修隧道的影响规律。结果表明:随着盾构开挖深度的增加,地表沉降、土体水平位移、先修隧道管片变形均有明显增大,中岩柱稳定性降低;采用中隔墙加固措施效果显著,与未加固时相比,工程开挖至19环时,地表沉降与土体水平位移最大值分别降低31.1%,70%,先行隧道管片横向扩张与竖向变形最大值分别降低56.8%,73.5%,中岩柱稳定性明显提高,故在超小净距地段采用中隔墙可以起到良好的加固作用。

     

  • 图  1  盾构隧道位置及地层分布(单位:m)

    图  2  中隔墙剖面示意图

    图  3  监测断面位置示意图

    图  4  盾构隧道施工三维数值分析模型(单位:m)

    图  5  盾构施工荷载

    图  6  地表沉降曲线

    图  7  土体水平位移监测点位布设

    图  8  土体水平位移

    图  9  中岩柱监测点位布设

    图  10  第19环N1—N5测点横向应力图(单位:kPa)

    图  11  第19环N1—N5测点竖向应力图(单位:kPa)

    图  12  左线(先行)隧道管片变形监测点位布设

    图  13  左线(先行)隧道管片横向变形(单位:mm)

    图  14  左线(先行)隧道管片竖向变形(单位:mm)

    图  15  模拟值与实测值对比分析

    表  1  岩土物理力学参数

    土层名称密度/(kg·m−3黏聚力/kPa内摩擦角/($^\circ $)弹性模量/MPa泊松比
    素填土190021.013.580.34
    粉质黏土191026.915.8180.32
    混合花岗岩残积土(可塑)184023.716.625.30.30
    混合花岗岩残积土(硬塑)186025.518.841.40.29
    全风化混合花岗岩184028.322.280.00.28
    强风化碎块状混合花岗岩215060.030.03600.28
    中等风化混合花岗岩2330200.042.012000.29
    微风化混合花岗岩2600500.048.050000.29
    下载: 导出CSV

    表  2  材料物理力学参数

    材料密度/(kg·m−3弹性模量/MPa泊松比
    中隔墙2400$2.55 \times {10^4}$0.2
    管片2500$3.45 \times {10^4}$0.3
    注浆材料硬化前20001.200.3
    硬化后20006.0004
    盾壳7850$2 \times {10^5}$0.3
    下载: 导出CSV

    表  3  N1—N5测点水平位移 mm 

    监测断面 加固情况 N1 N2 N3 N4 N5
    第4环未加固0.52−0.730.581.280.64
    加固0.58−0.290.010.390.17
    第7环未加固0.53−0.895.553.551.02
    加固1.54−0.481.861.61.15
    第10环未加固1.77−0.9213.297.882.18
    加固2.89−0.583.83.792.48
    第13环未加固2.37−0.6415.058.512.44
    加固3.64−0.464.744.622.92
    第16环未加固2.95021.039.822.91
    加固4.4406.245.83.57
    第19环未加固3.24024.7610.192.98
    加固4.9107.326.533.85
    下载: 导出CSV

    表  4  N1—N5测点竖向位移 mm 

    监测断面 加固情况 N1 N2 N3 N4 N5
    第4环未加固−6.85−8.93−13.26−9.31−4.32
    加固−4.48−5.98−5.62−5.58−5.56
    第7环未加固−6.91−8.03−33.51−2.281.67
    加固−4.46−5.60−5.82−5.51−5.25
    第10环未加固−6.78−7.63−54.741.136.93
    加固−4.44−5.33−5.92−5.37−4.94
    第13环未加固−6.58−5.10−58.721.747.69
    加固−4.39−3.59−5.95−5.31−4.84
    第16环未加固−6.13−0.15−68.994.729.29
    加固−4.29−0.12−5.92−5.20−4.69
    第19环未加固−5.81−0.13−82.354.209.53
    加固−4.22−0.08−5.88−5.12−4.61
    下载: 导出CSV
  • [1] 崔光耀, 田宇航, 肖 毅, 等. 高风险城市环境地铁小净距隧道近接隧道群施工方案优选[J]. 中国安全生产科学技术,2022,18(3):156-161. (CUI G Y, TIAN Y H, XIAO Y, et al. Optimization of construction scheme for metro small clear distance tunnel close to tunnel group in high-risk urban environment[J]. Journal of Safety Science and Technology,2022,18(3):156-161. (in Chinese)

    CUI G Y, TIAN Y H, XIAO Y, et al. Optimization of construction scheme for metro small clear distance tunnel close to tunnel group in high-risk urban environment[J]. Journal of Safety Science and Technology, 2022, 18(3): 156-161. (in Chinese)
    [2] 宋高锐, 王渭明, 王国富, 等. 盾构与浅埋暗挖隧道小净距并行施工工法优选[J]. 科学技术与工程,2021,21(15):6472-6478. (SONG G R, WANG W M, WANG G F, et al. Optimization of shield tunneling and shallow buried tunnel with small clear distance in parallel construction[J]. Science Technology and Engineering,2021,21(15):6472-6478. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.15.051

    SONG G R, WANG W M, WANG G F, et al. Optimization of shield tunneling and shallow buried tunnel with small clear distance in parallel construction[J]. Science Technology and Engineering, 2021, 21(15): 6472-6478. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.15.051
    [3] 李 宗. 软土条件下地铁小净距盾构隧道变形控制技术[J]. 铁道标准设计,2012(6):112-116. (LI Z. Technology on deformation control of close-spaced shield tunnel of metro in soft soil conditions[J]. Railway Standard Design,2012(6):112-116. (in Chinese) doi: 10.3969/j.issn.1004-2954.2012.06.029

    LI Z. Technology on deformation control of close-spaced shield tunnel of metro in soft soil conditions[J]. Railway Standard Design, 2012(6): 112-116. (in Chinese) doi: 10.3969/j.issn.1004-2954.2012.06.029
    [4] ZHENG H B, LI P F, MA G W. Stability analysis of the middle soil pillar for asymmetric parallel tunnels by using model testing and numerical simulations[J]. Tunnelling and Underground Space Technology,2021,108:103686. doi: 10.1016/j.tust.2020.103686
    [5] 刘庆丰, 吴 剑, 刘 凯. 盾构并行穿越施工对既有隧道影响分析与关键技术[J]. 科学技术与工程,2020,20(12):4939-4947. (LIU Q F, WU J, LIU K. Influence analysis and key technology of shield tunnel parallel crossing construction under existing tunnels[J]. Science Technology and Engineering,2020,20(12):4939-4947. (in Chinese)

    LIU Q F, WU J, LIU K. Influence analysis and key technology of shield tunnel parallel crossing construction under existing tunnels[J]. Science Technology and Engineering, 2020, 20(12): 4939-4947. (in Chinese)
    [6] 何 川, 苏宗贤, 曾东洋. 盾构隧道施工对已建平行隧道变形和附加内力的影响研究[J]. 岩石力学与工程学报,2007,26(10):2063-2069. (HE C, SU Z X, ZENG D Y. Research on influence of shield tunnel construction on deformation and secondary inner force of constructed parallel tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2063-2069. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.10.015

    HE C, SU Z X, ZENG D Y. Research on influence of shield tunnel construction on deformation and secondary inner force of constructed parallel tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2063-2069. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.10.015
    [7] 戴 俊, 田国宾, 熊咸玉. 基于围岩受力影响的小净距隧道开挖方法优化[J]. 科学技术与工程,2019,19(29):307-311. (DAI J, TIAN G B, XIONG X Y. Optimization of excavation method of small spacing tunnel based on the influence of surrounding rock stress[J]. Science Technology and Engineering,2019,19(29):307-311. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.29.050

    DAI J, TIAN G B, XIONG X Y. Optimization of excavation method of small spacing tunnel based on the influence of surrounding rock stress[J]. Science Technology and Engineering, 2019, 19(29): 307-311. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.29.050
    [8] 姚 勇, 何 川, 谢卓雄. 双线小净距隧道中岩墙力学特征及加固措施研究[J]. 岩土力学,2007,28(9):1883-1888. (YAO Y, HE C, XIE Z X. Study of mechanical behavior and reinforcing measures of middle rock wall of parallel tunnel with small interval[J]. Rock and Soil Mechanics,2007,28(9):1883-1888. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.021

    YAO Y, HE C, XIE Z X. Study of mechanical behavior and reinforcing measures of middle rock wall of parallel tunnel with small interval[J]. Rock and Soil Mechanics, 2007, 28(9): 1883-1888. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.021
    [9] 扈 萍, 马 梁, 李 萌, 等. 小净距隧道后行洞开挖对先行洞的变形影响[J]. 济南大学学报(自然科学版),2022,36(3):246-251,272. (HU P, MA L, LI M, et al. Deformation effect of subsequent holes excavation on advanced holes in small clear distance tunnels[J]. Journal of University of Jinan (Science and Technology),2022,36(3):246-251,272. (in Chinese)

    HU P, MA L, LI M, et al. Deformation effect of subsequent holes excavation on advanced holes in small clear distance tunnels[J]. Journal of University of Jinan (Science and Technology), 2022, 36(3): 246-251,272. (in Chinese)
    [10] 李雨哲, 柏 署, 杨 雄, 等. 不等跨四连拱隧道中隔墙结构受力现场测试与分析[J]. 岩土工程学报,2023,45(10):2201-2208. (LI Y Z, BAI S, YANG X, et al. Field mechanical tests and analyses of partition walls in unequal-span four-arch tunnels[J]. Chinese Journal of Geotechnical Engineering,2023,45(10):2201-2208. (in Chinese) doi: 10.11779/CJGE20220809

    LI Y Z, BAI S, YANG X, et al. Field mechanical tests and analyses of partition walls in unequal-span four-arch tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2201-2208. (in Chinese) doi: 10.11779/CJGE20220809
    [11] 田鲁鲁, 张 智, 郭永发. 浅埋连拱隧道中隔墙地基受力变形及注浆加固研究[J]. 岩土工程技术,2023,37(3):284-290. (TIAN L L, ZHANG Z, GUO Y F. Foundation force and grouting reinforcement of central separate wall in shallow buried multi-arch tunnel[J]. Geotechnical Engineering Technique,2023,37(3):284-290. (in Chinese)

    TIAN L L, ZHANG Z, GUO Y F. Foundation force and grouting reinforcement of central separate wall in shallow buried multi-arch tunnel[J]. Geotechnical Engineering Technique, 2023, 37(3): 284-290. (in Chinese)
    [12] 董 飞, 黄 俊, 李 奥, 等. 大直径盾构隧道中隔墙顶裂缝模式及扩展机制研究[J]. 隧道建设(中英文),2023,43(1):82-91. (DONG F, HUANG J, LI A, et al. Crack mode and propagation mechanism of diaphragm wall top in large-diameter shield tunnel[J]. Tunnel Construction,2023,43(1):82-91. (in Chinese)

    DONG F, HUANG J, LI A, et al. Crack mode and propagation mechanism of diaphragm wall top in large-diameter shield tunnel[J]. Tunnel Construction, 2023, 43(1): 82-91. (in Chinese)
    [13] 杜阳平. 土压盾构隧道小净距施工处理措施[J]. 居舍, 2021(22): 41-42. (DU Y P. Measures to deal with small clearances in earth pressure shield tunnel construction[J]. Ju She, 2021(22): 41-42. (in Chinese)

    DU Y P. Measures to deal with small clearances in earth pressure shield tunnel construction[J]. Ju She, 2021(22): 41-42. (in Chinese)
    [14] 赵乙丁, 刘守花, 阳军生, 等. 小净距浅埋盾构隧道相互影响机制与控制措施研究[J]. 北京交通大学学报,2020,44(1):120-128. (ZHAO Y D, LIU S H, YANG J S, et al. Interaction mechanisms and control measures of shallow-buried shield tunnels with small clear distance[J]. Journal of Beijing Jiaotong University,2020,44(1):120-128. (in Chinese) doi: 10.11860/j.issn.1673-0291.20190075

    ZHAO Y D, LIU S H, YANG J S, et al. Interaction mechanisms and control measures of shallow-buried shield tunnels with small clear distance[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 120-128. (in Chinese) doi: 10.11860/j.issn.1673-0291.20190075
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-21
  • 修回日期:  2023-12-14
  • 录用日期:  2024-03-11
  • 刊出日期:  2025-02-21

目录

    /

    返回文章
    返回