Shaking table test on seismic performance of energy-dissipating pile-anchor structure under El Centro seismic waves
-
摘要: 为增强结构抗震韧性,减、隔震技术及高性能材料已在建筑结构和桥梁领域得到广泛应用,而岩土支挡结构的抗震性能优化研究还相对落后。基于ECC高韧性材料与黏滞阻尼减震技术构建了一种耗能型桩锚结构,通过振动台试验对其抗震性能进行了评估。研究主要从加速度响应、希尔伯特谱变化以及动态剪应力–剪应变等方面分析了新型结构的动力响应特性。分析表明,耗能型桩锚结构会使浅表土体消耗地震能量增多,从而有效降低传递至桩身的破坏能量,减缓支护结构的损伤破坏。此外,研究还发现希尔伯特谱能准确描述地震波时频特性,全面展示结构动力特性变化。研究结果可为锚索抗滑桩结构抗震性能优化设计提供参考依据。Abstract: To enhance the seismic resilience of structures, isolation and damping technologies along with high-performance materials have been widely adopted in the construction of buildings and bridges. However, optimizing seismic performance in geotechnical retaining structures remains relatively underdeveloped. Therefore, this study introduced an energy-dissipating pile-anchor structure developed using Engineered Cementitious Composite (ECC) materials and viscous damping technology, and its seismic performance was assessed through shaking table tests. The dynamic response characteristics of the new structure were analyzed, focusing on acceleration response, Hilbert spectral changes, and dynamic shear stress-strain behaviors. The analysis indicates that the energy-dissipating pile-anchor system increases the energy absorption of superficial soil layers during seismic events, effectively reducing the energy transmitted to the pile body and thus mitigating damage to the support structure. Additionally, the research found that the Hilbert spectrum accurately describes the time-frequency characteristics of seismic waves, providing a comprehensive view of the structural dynamics. These results offer references for the optimization of seismic resilience in anchor-supported slide-resistant pile structures.
-
表 1 试验模型相似比尺寸
物理量 相似关系 相似比(原型:模型) 几何尺寸 Cl 10∶1 加速度 Ca 1∶1 重力加速度 Cg=Ca 1∶1 重力 Cγ 1∶1 弹性模量 CE= Cl Cγ 10∶1 黏聚力 Cc= Cl Cγ 10∶1 内摩擦角 Cφ 1 时间 CT= SQRT(Cl/Ca) 3.162∶1 频率 Cω= SQRT(Ca/Cl) 0.316∶1 应力 Cσ= Cl Cγ 10∶1 应变 Cε 1∶1 表 2 振动台技术指标
台面
尺寸/m最大
载重/kg频率
范围/Hz最大加速度
/(m·s−2)最大速度
/(m·s−1)最大
位移/m加载
方向1.2 ×1.2 1000 0~50 12 0.5 0.1 水平、垂直 表 3 滑体材料物理力学参数
材料名称 质量配合比 密度
/(g·cm−3)黏聚力
/kPa内摩擦角
/(○)滑体 黏土∶河砂∶水=
2∶27.55∶12 6.52 20.38 表 4 ECC材料物理力学参数
材料名称 配合比(粉煤灰∶
石英砂∶水∶减水剂)弹性模
量/GPa抗压强
度/MPa抗拉强
度/MPa极限拉
应变/%ECC材料 0.15∶0.85∶0.264∶0.37∶
0.93%,添加2%(体积
掺量)PVA纤维3.2 7.2 1.3 >2.5 表 5 加载工况表
工况 地震波 输入峰值加速度 1 白噪声 0.05g 2 El Centro 0.1g 3 白噪声 0.05g 4 El Centro 0.2g 5 白噪声 0.05g 6 El Centro 0.3g 7 白噪声 0.05g 8 El Centro 0.4g 9 白噪声 0.05g 10 El Centro 0.5g 11 白噪声 0.05g 12 El Centro 0.6g 13 白噪声 0.05g 14 El Centro 0.7g 15 白噪声 0.05g -
[1] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报,2008,16(6):730-741. (HUANG R Q, PEI X J, LI T B. Basic characteristics and formation mechanism of the largest scale landslide at Dagungdao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(6):730-741. (in Chinese)HUANG R Q, PEI X J, LI T B. Basic characteristics and formation mechanism of the largest scale landslide at Dagungdao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741. (in Chinese) [2] 宋 章, 张广泽, 蒋良文, 等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,2016,60(1):14-19. (SONG Z, ZHANG G Z, JIANG L W, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet railway[J]. Railway Standard Design,2016,60(1):14-19. (in Chinese)SONG Z, ZHANG G Z, JIANG L W, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet railway[J]. Railway Standard Design, 2016, 60(1): 14-19. (in Chinese) [3] 邢爱国, 吴志坚, 陈龙珠, 等. 汶川地震在甘肃省的次生典型边坡灾害特征[J]. 西北地震学报,2010,32(1):95-98. (XING A G, WU Z J, CHEN L Z, et al. Characteristics of secondary typical slope disaster in Gansu province induced by the Wenchuan earthquake[J]. China Earthquake Engineering Journal,2010,32(1):95-98. (in Chinese)XING A G, WU Z J, CHEN L Z, et al. Characteristics of secondary typical slope disaster in Gansu province induced by the Wenchuan earthquake[J]. China Earthquake Engineering Journal, 2010, 32(1): 95-98. (in Chinese) [4] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433-444. (YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology,2008,16(4):433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001 [5] 程时涛, 何浩祥, 程 扬, 等. 基于非完美维修和韧性提升理念的震损结构性能恢复策略[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html (CHENG S T, HE H X, CHENG Y, et al. Performance recovery strategy of seismic-damaged structures upon imperfect maintenance and resilience improvement[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html.(in Chinese)CHENG S T, HE H X, CHENG Y, et al. Performance recovery strategy of seismic-damaged structures upon imperfect maintenance and resilience improvement[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html.(in Chinese) [6] 邓 鹏, 周锦鹏, 黄 频. 锈蚀钢筋混凝土框架结构的抗震韧性评估[J]. 地震工程与工程振动,2023,43(3):23-34. (DENG P, ZHOU J P, HUANG P. Evaluation of seismic resilience of corroded reinforced concrete frame structure[J]. Earthquake Engineering and Engineering Dynamics,2023,43(3):23-34. (in Chinese)DENG P, ZHOU J P, HUANG P. Evaluation of seismic resilience of corroded reinforced concrete frame structure[J]. Earthquake Engineering and Engineering Dynamics, 2023, 43(3): 23-34. (in Chinese) [7] 石 晟, 杜东升, 王曙光, 等. 高层钢结构不同减震加固方案的抗震韧性评估[J]. 土木工程学报,2020,53(4):71-82. (SHI S, DU D S, WANG S G, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio[J]. China Civil Engineering Journal,2020,53(4):71-82. (in Chinese)SHI S, DU D S, WANG S G, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio[J]. China Civil Engineering Journal, 2020, 53(4): 71-82. (in Chinese) [8] 邱灿星, 杜修力. 自复位结构的研究进展和应用现状[J]. 土木工程学报,2021,54(11):11-26. (QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal,2021,54(11):11-26. (in Chinese)QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal, 2021, 54(11): 11-26. (in Chinese) [9] 谢 强, 杨振宇, 何 畅. 带减震支座的T型开关设备地震响应分析及试验研究[J]. 地震工程与工程振动,2019,39(1):54-61. (XIE Q, YANG Z Y, HE C. Seismic responses analysis and experimental study of T-shape switch equipment with base isolation[J]. Earthquake Engineering and Engineering Dynamics,2019,39(1):54-61. (in Chinese)XIE Q, YANG Z Y, HE C. Seismic responses analysis and experimental study of T-shape switch equipment with base isolation[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1): 54-61. (in Chinese) [10] BATHURST R J, ZARNANI S, GASKIN A. Shaking table testing of geofoam seismic buffers[J]. Soil Dynamics and Earthquake Engineering,2007,27(4):324-332. doi: 10.1016/j.soildyn.2006.08.003 [11] PAI L F, WU H G. Shaking table test of comparison and optimization of seismic performance of slope reinforcement with multi-anchor piles[J]. Soil Dynamics and Earthquake Engineering,2021,145:106737. doi: 10.1016/j.soildyn.2021.106737 [12] 康迎杰, 彭凌云, 刘庆宽, 等. 近断层脉冲地震作用下调谐型阻尼器对隔震结构的减震控制[J/OL]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html (KANG Y J, PENG L Y, LIU Q K, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html.(in Chinese)KANG Y J, PENG L Y, LIU Q K, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html.(in Chinese) [13] 信 任, 张 强, 黄 炜, 等. 黏滞阻尼器加固大空间混凝土框架结构振动台试验研究[J]. 建筑结构学报,2023,44(3):20-29. (XIN R, ZHANG Q, HUANG W, et al. Shaking table test of large-space RC frame reinforced by viscous dampers[J]. Journal of Building Structures,2023,44(3):20-29. (in Chinese)XIN R, ZHANG Q, HUANG W, et al. Shaking table test of large-space RC frame reinforced by viscous dampers[J]. Journal of Building Structures, 2023, 44(3): 20-29. (in Chinese) [14] 刘彦辉, 谭 平, 金建敏, 等. 地震作用下全浮漂大跨斜拉桥耗能减震控制研究[J]. 振动与冲击,2015,34(8):1-6. (LIU Y H, TAN P, JIN J M, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock,2015,34(8):1-6. (in Chinese)LIU Y H, TAN P, JIN J M, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock, 2015, 34(8): 1-6. (in Chinese) [15] 彭 晓, 黄晓斌, 阙海群, 等. ECC-BFRP加固地铁车站抗震性能研究[J]. 地震工程与工程振动,2022,42(6):184-191. (PENG X, HUANG X B, QUE H Q, et al. Seismic performance of subway station reinforced by the ECC-BFRP[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):184-191. (in Chinese)PENG X, HUANG X B, QUE H Q, et al. Seismic performance of subway station reinforced by the ECC-BFRP[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 184-191. (in Chinese) [16] 袁 方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学,2021,38(8):55-65,144. (YUAN F, ZHAO X Y. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65,144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532YUAN F, ZHAO X Y. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics, 2021, 38(8): 55-65,144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532 [17] 韩 军, 翟永林, 张 晖, 等. 底部采用高性能纤维增强混凝土的RC剪力墙结构抗震性能分析[J]. 建筑结构学报,2021,42(S1):47-54. (HAN J, ZHAI Y L, ZHANG H, et al. Seismic performance analysis of RC shear wall structure with fiber-reinforced concrete in plastic hinge region[J]. Journal of Building Structures,2021,42(S1):47-54. (in Chinese)HAN J, ZHAI Y L, ZHANG H, et al. Seismic performance analysis of RC shear wall structure with fiber-reinforced concrete in plastic hinge region[J]. Journal of Building Structures, 2021, 42(S1): 47-54. (in Chinese) [18] BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations[J]. Physical Review,1914,4(4):345-376. doi: 10.1103/PhysRev.4.345 [19] LIAN J, DING X M, ZHANG L. Shaking table test on seismic response of an accumulation landslide reinforced by pile-plate retaining wall based on the time-frequency analysis method[J]. Journal of Central South University,2023,30(5):1710-1721. doi: 10.1007/s11771-023-5323-7 [20] RAYAMAJHI D, TAMURA S, KHOSRAVI M, et al. Dynamic centrifuge tests to evaluate reinforcing mechanisms of soil-cement columns in liquefiable sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015,141(6):04015015. doi: 10.1061/(ASCE)GT.1943-5606.0001298 [21] KAMAI R, BOULANGER R W. Characterizing localization processes during liquefaction using inverse analyses of instrumentation arrays[M]//HATZOR Y H, SULEM J, VARDOULAKIS I. Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. London: Routledge, 2009: 219-238. -