留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

El Centro地震波作用下耗能型桩锚结构抗震性能振动台试验研究

刘学成 任寄瑜 欧强 王春艳 刘诗敏 丁选明

刘学成, 任寄瑜, 欧强, 王春艳, 刘诗敏, 丁选明. El Centro地震波作用下耗能型桩锚结构抗震性能振动台试验研究[J]. 岩土工程技术, 2025, 39(1): 122-131. doi: 10.20265/j.cnki.issn.1007-2993.2023-0874
引用本文: 刘学成, 任寄瑜, 欧强, 王春艳, 刘诗敏, 丁选明. El Centro地震波作用下耗能型桩锚结构抗震性能振动台试验研究[J]. 岩土工程技术, 2025, 39(1): 122-131. doi: 10.20265/j.cnki.issn.1007-2993.2023-0874
Liu Xuecheng, Ren Jiyu, Ou Qiang, Wang Chunyan, Liu Shimin, Ding Xuanming. Shaking table test on seismic performance of energy-dissipating pile-anchor structure under El Centro seismic waves[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 122-131. doi: 10.20265/j.cnki.issn.1007-2993.2023-0874
Citation: Liu Xuecheng, Ren Jiyu, Ou Qiang, Wang Chunyan, Liu Shimin, Ding Xuanming. Shaking table test on seismic performance of energy-dissipating pile-anchor structure under El Centro seismic waves[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 122-131. doi: 10.20265/j.cnki.issn.1007-2993.2023-0874

El Centro地震波作用下耗能型桩锚结构抗震性能振动台试验研究

doi: 10.20265/j.cnki.issn.1007-2993.2023-0874
基金项目: 国家自然科学基金(52178312,52108299);重庆市自然科学基金创新群体科学基金(cstc2020jcyj-cxttX0003)
详细信息
    作者简介:

    刘学成,男,1999年生,硕士,助理工程师。研究方向:地震工程。E-mail:xuecheng_liu_cqu@163.com

    通讯作者:

    欧 强,男,1992年生,博士,讲师。研究方向:复合地基与土动力学。E-mail:ouq126@cqu.edu.cn

  • 中图分类号: TU435

Shaking table test on seismic performance of energy-dissipating pile-anchor structure under El Centro seismic waves

  • 摘要: 为增强结构抗震韧性,减、隔震技术及高性能材料已在建筑结构和桥梁领域得到广泛应用,而岩土支挡结构的抗震性能优化研究还相对落后。基于ECC高韧性材料与黏滞阻尼减震技术构建了一种耗能型桩锚结构,通过振动台试验对其抗震性能进行了评估。研究主要从加速度响应、希尔伯特谱变化以及动态剪应力–剪应变等方面分析了新型结构的动力响应特性。分析表明,耗能型桩锚结构会使浅表土体消耗地震能量增多,从而有效降低传递至桩身的破坏能量,减缓支护结构的损伤破坏。此外,研究还发现希尔伯特谱能准确描述地震波时频特性,全面展示结构动力特性变化。研究结果可为锚索抗滑桩结构抗震性能优化设计提供参考依据。

     

  • 图  1  试验模型示意图

    图  2  试验模型建造流程示意图

    图  3  输入地震波

    图  4  水平向PGA放大系数变化图

    图  5  沿高程PGA放大系数变化图

    图  6  沿坡面PGA放大系数变化图

    图  7  PGA = 0.5g El Centro波作用下各测点加速度时程曲线及其傅里叶谱

    图  8  IMF分量加速度时程及其傅里叶谱

    图  9  PGA = 0.5g El Centro波作用下各测点希尔伯特能量谱

    图  10  不同震级下A6测点与A12测点希尔伯特能量谱

    图  11  动态剪应变计算流程

    图  12  不同震级下边坡土体剪应力–剪应变曲线

    表  1  试验模型相似比尺寸

    物理量 相似关系 相似比(原型:模型)
    几何尺寸 Cl 10∶1
    加速度 Ca 1∶1
    重力加速度 Cg=Ca 1∶1
    重力 Cγ 1∶1
    弹性模量 CE= Cl Cγ 10∶1
    黏聚力 Cc= Cl Cγ 10∶1
    内摩擦角 Cφ 1
    时间 CT= SQRT(Cl/Ca) 3.162∶1
    频率 Cω= SQRT(Ca/Cl) 0.316∶1
    应力 Cσ= Cl Cγ 10∶1
    应变 Cε 1∶1
    下载: 导出CSV

    表  2  振动台技术指标

    台面
    尺寸/m
    最大
    载重/kg
    频率
    范围/Hz
    最大加速度
    /(m·s−2)
    最大速度
    /(m·s−1)
    最大
    位移/m
    加载
    方向
    1.2 ×1.2 1000 0~50 12 0.5 0.1 水平、垂直
    下载: 导出CSV

    表  3  滑体材料物理力学参数

    材料名称 质量配合比 密度
    /(g·cm−3)
    黏聚力
    /kPa
    内摩擦角
    /()
    滑体 黏土∶河砂∶水=
    2∶27.55∶1
    2 6.52 20.38
    下载: 导出CSV

    表  4  ECC材料物理力学参数

    材料名称 配合比(粉煤灰∶
    石英砂∶水∶减水剂)
    弹性模
    量/GPa
    抗压强
    度/MPa
    抗拉强
    度/MPa
    极限拉
    应变/%
    ECC材料 0.15∶0.85∶0.264∶0.37∶
    0.93%,添加2%(体积
    掺量)PVA纤维
    3.2 7.2 1.3 >2.5
    下载: 导出CSV

    表  5  加载工况表

    工况地震波输入峰值加速度
    1白噪声0.05g
    2El Centro0.1g
    3白噪声0.05g
    4El Centro0.2g
    5白噪声0.05g
    6El Centro0.3g
    7白噪声0.05g
    8El Centro0.4g
    9白噪声0.05g
    10El Centro0.5g
    11白噪声0.05g
    12El Centro0.6g
    13白噪声0.05g
    14El Centro0.7g
    15白噪声0.05g
    下载: 导出CSV
  • [1] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报,2008,16(6):730-741. (HUANG R Q, PEI X J, LI T B. Basic characteristics and formation mechanism of the largest scale landslide at Dagungdao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(6):730-741. (in Chinese)

    HUANG R Q, PEI X J, LI T B. Basic characteristics and formation mechanism of the largest scale landslide at Dagungdao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741. (in Chinese)
    [2] 宋 章, 张广泽, 蒋良文, 等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,2016,60(1):14-19. (SONG Z, ZHANG G Z, JIANG L W, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet railway[J]. Railway Standard Design,2016,60(1):14-19. (in Chinese)

    SONG Z, ZHANG G Z, JIANG L W, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet railway[J]. Railway Standard Design, 2016, 60(1): 14-19. (in Chinese)
    [3] 邢爱国, 吴志坚, 陈龙珠, 等. 汶川地震在甘肃省的次生典型边坡灾害特征[J]. 西北地震学报,2010,32(1):95-98. (XING A G, WU Z J, CHEN L Z, et al. Characteristics of secondary typical slope disaster in Gansu province induced by the Wenchuan earthquake[J]. China Earthquake Engineering Journal,2010,32(1):95-98. (in Chinese)

    XING A G, WU Z J, CHEN L Z, et al. Characteristics of secondary typical slope disaster in Gansu province induced by the Wenchuan earthquake[J]. China Earthquake Engineering Journal, 2010, 32(1): 95-98. (in Chinese)
    [4] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433-444. (YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology,2008,16(4):433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001

    YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001
    [5] 程时涛, 何浩祥, 程 扬, 等. 基于非完美维修和韧性提升理念的震损结构性能恢复策略[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html (CHENG S T, HE H X, CHENG Y, et al. Performance recovery strategy of seismic-damaged structures upon imperfect maintenance and resilience improvement[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html.(in Chinese)

    CHENG S T, HE H X, CHENG Y, et al. Performance recovery strategy of seismic-damaged structures upon imperfect maintenance and resilience improvement[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html.(in Chinese)
    [6] 邓 鹏, 周锦鹏, 黄 频. 锈蚀钢筋混凝土框架结构的抗震韧性评估[J]. 地震工程与工程振动,2023,43(3):23-34. (DENG P, ZHOU J P, HUANG P. Evaluation of seismic resilience of corroded reinforced concrete frame structure[J]. Earthquake Engineering and Engineering Dynamics,2023,43(3):23-34. (in Chinese)

    DENG P, ZHOU J P, HUANG P. Evaluation of seismic resilience of corroded reinforced concrete frame structure[J]. Earthquake Engineering and Engineering Dynamics, 2023, 43(3): 23-34. (in Chinese)
    [7] 石 晟, 杜东升, 王曙光, 等. 高层钢结构不同减震加固方案的抗震韧性评估[J]. 土木工程学报,2020,53(4):71-82. (SHI S, DU D S, WANG S G, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio[J]. China Civil Engineering Journal,2020,53(4):71-82. (in Chinese)

    SHI S, DU D S, WANG S G, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio[J]. China Civil Engineering Journal, 2020, 53(4): 71-82. (in Chinese)
    [8] 邱灿星, 杜修力. 自复位结构的研究进展和应用现状[J]. 土木工程学报,2021,54(11):11-26. (QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal,2021,54(11):11-26. (in Chinese)

    QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal, 2021, 54(11): 11-26. (in Chinese)
    [9] 谢 强, 杨振宇, 何 畅. 带减震支座的T型开关设备地震响应分析及试验研究[J]. 地震工程与工程振动,2019,39(1):54-61. (XIE Q, YANG Z Y, HE C. Seismic responses analysis and experimental study of T-shape switch equipment with base isolation[J]. Earthquake Engineering and Engineering Dynamics,2019,39(1):54-61. (in Chinese)

    XIE Q, YANG Z Y, HE C. Seismic responses analysis and experimental study of T-shape switch equipment with base isolation[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1): 54-61. (in Chinese)
    [10] BATHURST R J, ZARNANI S, GASKIN A. Shaking table testing of geofoam seismic buffers[J]. Soil Dynamics and Earthquake Engineering,2007,27(4):324-332. doi: 10.1016/j.soildyn.2006.08.003
    [11] PAI L F, WU H G. Shaking table test of comparison and optimization of seismic performance of slope reinforcement with multi-anchor piles[J]. Soil Dynamics and Earthquake Engineering,2021,145:106737. doi: 10.1016/j.soildyn.2021.106737
    [12] 康迎杰, 彭凌云, 刘庆宽, 等. 近断层脉冲地震作用下调谐型阻尼器对隔震结构的减震控制[J/OL]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html (KANG Y J, PENG L Y, LIU Q K, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html.(in Chinese)

    KANG Y J, PENG L Y, LIU Q K, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html.(in Chinese)
    [13] 信 任, 张 强, 黄 炜, 等. 黏滞阻尼器加固大空间混凝土框架结构振动台试验研究[J]. 建筑结构学报,2023,44(3):20-29. (XIN R, ZHANG Q, HUANG W, et al. Shaking table test of large-space RC frame reinforced by viscous dampers[J]. Journal of Building Structures,2023,44(3):20-29. (in Chinese)

    XIN R, ZHANG Q, HUANG W, et al. Shaking table test of large-space RC frame reinforced by viscous dampers[J]. Journal of Building Structures, 2023, 44(3): 20-29. (in Chinese)
    [14] 刘彦辉, 谭 平, 金建敏, 等. 地震作用下全浮漂大跨斜拉桥耗能减震控制研究[J]. 振动与冲击,2015,34(8):1-6. (LIU Y H, TAN P, JIN J M, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock,2015,34(8):1-6. (in Chinese)

    LIU Y H, TAN P, JIN J M, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock, 2015, 34(8): 1-6. (in Chinese)
    [15] 彭 晓, 黄晓斌, 阙海群, 等. ECC-BFRP加固地铁车站抗震性能研究[J]. 地震工程与工程振动,2022,42(6):184-191. (PENG X, HUANG X B, QUE H Q, et al. Seismic performance of subway station reinforced by the ECC-BFRP[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):184-191. (in Chinese)

    PENG X, HUANG X B, QUE H Q, et al. Seismic performance of subway station reinforced by the ECC-BFRP[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 184-191. (in Chinese)
    [16] 袁 方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学,2021,38(8):55-65,144. (YUAN F, ZHAO X Y. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65,144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532

    YUAN F, ZHAO X Y. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics, 2021, 38(8): 55-65,144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532
    [17] 韩 军, 翟永林, 张 晖, 等. 底部采用高性能纤维增强混凝土的RC剪力墙结构抗震性能分析[J]. 建筑结构学报,2021,42(S1):47-54. (HAN J, ZHAI Y L, ZHANG H, et al. Seismic performance analysis of RC shear wall structure with fiber-reinforced concrete in plastic hinge region[J]. Journal of Building Structures,2021,42(S1):47-54. (in Chinese)

    HAN J, ZHAI Y L, ZHANG H, et al. Seismic performance analysis of RC shear wall structure with fiber-reinforced concrete in plastic hinge region[J]. Journal of Building Structures, 2021, 42(S1): 47-54. (in Chinese)
    [18] BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations[J]. Physical Review,1914,4(4):345-376. doi: 10.1103/PhysRev.4.345
    [19] LIAN J, DING X M, ZHANG L. Shaking table test on seismic response of an accumulation landslide reinforced by pile-plate retaining wall based on the time-frequency analysis method[J]. Journal of Central South University,2023,30(5):1710-1721. doi: 10.1007/s11771-023-5323-7
    [20] RAYAMAJHI D, TAMURA S, KHOSRAVI M, et al. Dynamic centrifuge tests to evaluate reinforcing mechanisms of soil-cement columns in liquefiable sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015,141(6):04015015. doi: 10.1061/(ASCE)GT.1943-5606.0001298
    [21] KAMAI R, BOULANGER R W. Characterizing localization processes during liquefaction using inverse analyses of instrumentation arrays[M]//HATZOR Y H, SULEM J, VARDOULAKIS I. Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. London: Routledge, 2009: 219-238.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 修回日期:  2024-04-15
  • 录用日期:  2024-08-29
  • 刊出日期:  2025-02-21

目录

    /

    返回文章
    返回