Degradation of surrounding rock parameters in deep buried caverns: experimental and numerical simulation study
-
摘要: 洞室开挖会导致围岩刚度和强度参数劣化,而深埋洞室开挖过程中围岩参数劣化规律尚不明确。为此,通过对木寨岭隧道围岩的跨孔声波测试,揭示洞室开挖过程中参数劣化的空间分布规律,同时建立考虑围压和塑性应变影响的围岩参数劣化模型(CSS模型)并应用到该工程数值模拟中。结果表明:洞室开挖过程中围岩波速下降,可推断出围岩参数发生劣化;采用CSS模型能更好地反映出这种参数劣化现象;围岩参数劣化的空间分布规律可分区表示,越靠近洞壁,参数劣化程度越高,塑性区之外区域,在围压足够大的情况下会出现参数强化的情况。Abstract: Tunnel excavation can lead to degradation of the stiffness and strength parameters of the surrounding rock, while the degradation law of the surrounding rock parameters during deep buried tunnel excavation is still unclear. Therefore, by conducting cross hole acoustic testing on the surrounding rock of the Muzhailing Tunnel, the spatial distribution pattern of parameter degradation during the excavation process of the tunnel cavern was revealed. At the same time, a parameter degradation model (CSS model) considering the effects of confining pressure and plastic strain was established and applied to the numerical simulation of the project. The results showed that the wave velocity of the surrounding rock decreased during the excavation process, and the degradation pattern of the surrounding rock parameters can be inferred. The use of CSS models can better reflect this parameter degradation phenomenon. The spatial distribution pattern of the deterioration of surrounding rock parameters can be represented by zones. The closer it is to the tunnel wall, the higher the degree of parameter degradation. In areas outside the plastic zone, parameter strengthening may also occur under sufficient confining pressure.
-
表 1 待定参数表
弹性模量待定参数 黏聚力待定参数 内摩擦角待定参数 e1=−9333 c1=1.8 φ1=9.4 e2=19.3 c2=5.2×10−4 φ2=5.03×10−4 e3=−2.91×106 c3=0.047 φ3=0.23 e4=36000 c4=2.3 φ4=14.2 表 2 MC模型物理力学参数
黏聚力c/MPa 内摩擦角φ/(°) 弹性模量E/MPa 泊松比v 5.5 28 3.5×104 0.25 表 3 CSS模型物理力学参数
黏聚力c/MPa 内摩擦角φ/(°) 弹性模量E/MPa 泊松比v $ c_1\cdot e^{-\frac{\varepsilon\mathrm{\mathrm{_t^p}}}{c_2}}+c_3\cdot\sigma_3+c_4 $ $ \varphi_1\cdot e^{-\frac{\varepsilon\mathrm{\mathrm{_t^p}}}{\varphi_2}}+\varphi_3\cdot\sigma_3+\varphi_4 $ $ e_1\cdot e^{-\frac{\sigma_3}{e_2}}+e_3\cdot\varepsilon_{\mathrm{t}}^{\mathrm{p}}+e_4 $ 0.25 注:e1—e4,c1—c4,φ1—φ4参数取值见表1。 -
[1] 谢和平, 高 峰, 鞠 杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161-2178. (XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178. (in Chinese)XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178. (in Chinese) [2] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设,2017,37(2):123-134. (HONG K R. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction,2017,37(2):123-134. (in Chinese)HONG K R. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134. (in Chinese) [3] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):445-468. (XUE Y G, KONG F M, YANG W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):445-468. (in Chinese)XUE Y G, KONG F M, YANG W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. (in Chinese) [4] 李鹏飞, 赵 勇, 张顶立, 等. 基于现场实测数据统计的隧道围岩压力分布规律研究[J]. 岩石力学与工程学报,2013,32(7):1392-1399. (LI P F, ZHAO Y, ZHANG D L, et al. Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1392-1399. (in Chinese)LI P F, ZHAO Y, ZHANG D L, et al. Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1392-1399. (in Chinese) [5] ZHANG J H. Analysis of soft rock tunnel mechanics effects based on strain softening model of surrounding rock[J]. Advanced Materials Research,2012,424-425:520-525. doi: 10.4028/www.scientific.net/AMR.424-425.520 [6] 王延宁, 张 强, 李子仪, 等. 考虑弹塑性耦合效应的应变软化模型[J]. 煤炭学报,2020,45(12):4037-4051. (WANG Y N, ZHANG Q, LI Z Y, et al. Strain softening model considering elastic-plastic coupling effect[J]. Journal of China Coal Society,2020,45(12):4037-4051. (in Chinese)WANG Y N, ZHANG Q, LI Z Y, et al. Strain softening model considering elastic-plastic coupling effect[J]. Journal of China Coal Society, 2020, 45(12): 4037-4051. (in Chinese) [7] 陆银龙, 王连国, 杨 峰, 等. 软弱岩石峰后应变软化力学特性研究[J]. 岩石力学与工程学报,2010,29(3):640-648. (LU Y L, WANG L G, YANG F, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(3):640-648. (in Chinese)LU Y L, WANG L G, YANG F, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 640-648. [8] 周家文, 徐卫亚, 李明卫, 等. 岩石应变软化模型在深埋隧洞数值分析中的应用[J]. 岩石力学与工程学报,2009,28(6):1116-1127. (ZHOU J W, XU W Y, LI M W, et al. Application of rock strain softening model to numerical analysis of deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1116-1127. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.005ZHOU J W, XU W Y, LI M W, et al. Application of rock strain softening model to numerical analysis of deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1116-1127. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.005 [9] 张 帅, 王俊杰, 张海龙, 等. 考虑刚度与强度劣化的洞室围岩弹塑性分析[J]. 岩土工程学报,2024,46(1):101-109. (ZHANG S, WANG J J, ZHANG H L, et al. Elastoplastic analysis of surrounding rock of caverns considering deterioration of stiffness and strength[J]. Chinese Journal of Geotechnical Engineering,2024,46(1):101-109. (in Chinese)ZHANG S, WANG J J, ZHANG H L, et al. Elastoplastic analysis of surrounding rock of caverns considering deterioration of stiffness and strength[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 101-109. (in Chinese) [10] 王渭明, 赵增辉, 王 磊. 考虑刚度和强度劣化时弱胶结软岩巷道围岩的弹塑性损伤分析[J]. 采矿与安全工程学报,2013,30(5):679-685. (WANG W M, ZHAO Z H, WANG L. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering,2013,30(5):679-685. (in Chinese)WANG W M, ZHAO Z H, WANG L. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 679-685. (in Chinese) [11] 王延宁. 深部巷道围岩应变软化机理与稳定性控制研究[D]. 徐州: 中国矿业大学, 2018. (WANG Y N. Study on strain softening mechanism and stability control of deep roadway surrounding rock[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)WANG Y N. Study on strain softening mechanism and stability control of deep roadway surrounding rock[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese) [12] 赖 勇. 围压对杨氏模量的影响分析[J]. 重庆交通大学学报(自然科学版),2009,28(2):246-249,278. (LAI Y. Effect analysis of confining pressure on Young’s modulus[J]. Journal of Chongqing Jiaotong University (Natural Science),2009,28(2):246-249,278. (in Chinese)LAI Y. Effect analysis of confining pressure on Young’s modulus[J]. Journal of Chongqing Jiaotong University (Natural Science), 2009, 28(2): 246-249,278. (in Chinese) [13] 尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报,2003,22(1):53-60. (YOU M Q. Effect of confining pressure on the Young’s modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):53-60. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.01.010YOU M Q. Effect of confining pressure on the Young’s modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.01.010 [14] 周 辉, 杨凡杰, 张传庆, 等. 考虑围压效应的大理岩弹塑性耦合力学模型研究[J]. 岩石力学与工程学报,2012,31(12):2389-2399. (ZHOU H, YANG F J, ZHANG C Q, et al. An elastoplastic coupling mechanical model for marble considering confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2389-2399. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.002ZHOU H, YANG F J, ZHANG C Q, et al. An elastoplastic coupling mechanical model for marble considering confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2389-2399. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.002 [15] 张 凯. 脆性岩石力学模型与流固耦合机理研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010. (ZHANG K. Study on mechanical model and fluid-solid coupling mechanism for brittle rocks[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2010. (in Chinese)ZHANG K. Study on mechanical model and fluid-solid coupling mechanism for brittle rocks[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2010. (in Chinese) [16] 李 斌. 高围压条件下岩石破坏特征及强度准则研究[D]. 武汉: 武汉科技大学, 2015. (LI B. Study on rock failure characteristics and rock strength criteria under high confining pressure[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese)LI B. Study on rock failure characteristics and rock strength criteria under high confining pressure[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese) [17] 刘泉声, 刘恺德, 朱杰兵, 等. 高应力下原煤三轴压缩力学特性研究[J]. 岩石力学与工程学报,2014,33(1):24-34. (LIU Q S, LIU K D, ZHU J B, et al. Study of mechanical properties of raw coal under high stress with triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):24-34. (in Chinese)LIU Q S, LIU K D, ZHU J B, et al. Study of mechanical properties of raw coal under high stress with triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 24-34. (in Chinese) [18] 张培源, 张晓敏, 汪天庚. 岩石弹性模量与弹性波速的关系[J]. 岩石力学与工程学报,2001,20(6):785-788. (ZHANG P Y, ZHANG X M, WANG T G. Relationship between elastic moduli and wave velocities in rock[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(6):785-788. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.006ZHANG P Y, ZHANG X M, WANG T G. Relationship between elastic moduli and wave velocities in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 785-788. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.006 [19] 王如江, 任 猛, 刘劲松, 等. 岩石波速与强度参数的相关性研究[J]. 矿业研究与开发,2021,41(9):87-91. (WANG R J, REN M, LIU J S, et al. Study on correlation between rock wave velocity and strength parameters[J]. Mining Research and Development,2021,41(9):87-91. (in Chinese)WANG R J, REN M, LIU J S, et al. Study on correlation between rock wave velocity and strength parameters[J]. Mining Research and Development, 2021, 41(9): 87-91. (in Chinese) -