留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋洞室围岩参数劣化的试验与数值模拟研究

杨朝帅 李达强

杨朝帅, 李达强. 深埋洞室围岩参数劣化的试验与数值模拟研究[J]. 岩土工程技术, 2025, 39(2): 216-224. doi: 10.20265/j.cnki.issn.1007-2993.2023-0906
引用本文: 杨朝帅, 李达强. 深埋洞室围岩参数劣化的试验与数值模拟研究[J]. 岩土工程技术, 2025, 39(2): 216-224. doi: 10.20265/j.cnki.issn.1007-2993.2023-0906
Yang Chaoshuai, Li Daqiang. Degradation of surrounding rock parameters in deep buried caverns: experimental and numerical simulation study[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 216-224. doi: 10.20265/j.cnki.issn.1007-2993.2023-0906
Citation: Yang Chaoshuai, Li Daqiang. Degradation of surrounding rock parameters in deep buried caverns: experimental and numerical simulation study[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 216-224. doi: 10.20265/j.cnki.issn.1007-2993.2023-0906

深埋洞室围岩参数劣化的试验与数值模拟研究

doi: 10.20265/j.cnki.issn.1007-2993.2023-0906
基金项目: 中国中铁股份有限公司科技研究开发计划(cz 02-专项-02;2021-重点-44);广州市科技计划市校(院)企联合资助项目(2024A03J0981);中铁隧道局集团科技创新计划(隧研合2021-06)
详细信息
    作者简介:

    杨朝帅,男,1986年生,硕士,高级工程师,从事隧道及地下工程科研工作。E-mail:394343652@qq.com

  • 中图分类号: U452

Degradation of surrounding rock parameters in deep buried caverns: experimental and numerical simulation study

  • 摘要: 洞室开挖会导致围岩刚度和强度参数劣化,而深埋洞室开挖过程中围岩参数劣化规律尚不明确。为此,通过对木寨岭隧道围岩的跨孔声波测试,揭示洞室开挖过程中参数劣化的空间分布规律,同时建立考虑围压和塑性应变影响的围岩参数劣化模型(CSS模型)并应用到该工程数值模拟中。结果表明:洞室开挖过程中围岩波速下降,可推断出围岩参数发生劣化;采用CSS模型能更好地反映出这种参数劣化现象;围岩参数劣化的空间分布规律可分区表示,越靠近洞壁,参数劣化程度越高,塑性区之外区域,在围压足够大的情况下会出现参数强化的情况。

     

  • 图  1  CSS本构模型

    图  2  CSS模型计算流程图

    图  3  MTS815电液伺服岩石试验系统

    图  4  三轴压缩试验与CSS模型应力应变曲线

    图  5  渭武高速木寨岭隧道路线地层剖面图

    图  6  跨孔声波测试示意

    图  7  跨孔声波测试钻孔布置图

    图  8  现场操作与数据处理

    图  9  洞室声波时程曲线

    图  10  围岩的拟合波速场

    图  11  推导围岩参数场

    图  12  数值模型示意

    图  13  CSS模型和MC模型塑性区对比

    图  14  CSS模型应力应变场

    图  15  MC模型应力应变场

    图  16  CSS模型与MC模型应力应变对比

    图  17  CSS模型与实测参数对比

    图  18  洞室围岩分区及劣化程度示意

    表  1  待定参数表

    弹性模量待定参数黏聚力待定参数内摩擦角待定参数
    e1=−9333c1=1.8φ1=9.4
    e2=19.3c2=5.2×10−4φ2=5.03×10−4
    e3=−2.91×106c3=0.047φ3=0.23
    e4=36000c4=2.3φ4=14.2
    下载: 导出CSV

    表  2  MC模型物理力学参数

    黏聚力c/MPa内摩擦角φ/(°)弹性模量E/MPa泊松比v
    5.5283.5×1040.25
    下载: 导出CSV

    表  3  CSS模型物理力学参数

    黏聚力c/MPa 内摩擦角φ/(°) 弹性模量E/MPa 泊松比v
    $ c_1\cdot e^{-\frac{\varepsilon\mathrm{\mathrm{_t^p}}}{c_2}}+c_3\cdot\sigma_3+c_4 $ $ \varphi_1\cdot e^{-\frac{\varepsilon\mathrm{\mathrm{_t^p}}}{\varphi_2}}+\varphi_3\cdot\sigma_3+\varphi_4 $ $ e_1\cdot e^{-\frac{\sigma_3}{e_2}}+e_3\cdot\varepsilon_{\mathrm{t}}^{\mathrm{p}}+e_4 $ 0.25
    注:e1—e4c1—c4φ1—φ4参数取值见表1
    下载: 导出CSV
  • [1] 谢和平, 高 峰, 鞠 杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161-2178. (XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178. (in Chinese)

    XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178. (in Chinese)
    [2] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设,2017,37(2):123-134. (HONG K R. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction,2017,37(2):123-134. (in Chinese)

    HONG K R. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134. (in Chinese)
    [3] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):445-468. (XUE Y G, KONG F M, YANG W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):445-468. (in Chinese)

    XUE Y G, KONG F M, YANG W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. (in Chinese)
    [4] 李鹏飞, 赵 勇, 张顶立, 等. 基于现场实测数据统计的隧道围岩压力分布规律研究[J]. 岩石力学与工程学报,2013,32(7):1392-1399. (LI P F, ZHAO Y, ZHANG D L, et al. Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1392-1399. (in Chinese)

    LI P F, ZHAO Y, ZHANG D L, et al. Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1392-1399. (in Chinese)
    [5] ZHANG J H. Analysis of soft rock tunnel mechanics effects based on strain softening model of surrounding rock[J]. Advanced Materials Research,2012,424-425:520-525. doi: 10.4028/www.scientific.net/AMR.424-425.520
    [6] 王延宁, 张 强, 李子仪, 等. 考虑弹塑性耦合效应的应变软化模型[J]. 煤炭学报,2020,45(12):4037-4051. (WANG Y N, ZHANG Q, LI Z Y, et al. Strain softening model considering elastic-plastic coupling effect[J]. Journal of China Coal Society,2020,45(12):4037-4051. (in Chinese)

    WANG Y N, ZHANG Q, LI Z Y, et al. Strain softening model considering elastic-plastic coupling effect[J]. Journal of China Coal Society, 2020, 45(12): 4037-4051. (in Chinese)
    [7] 陆银龙, 王连国, 杨 峰, 等. 软弱岩石峰后应变软化力学特性研究[J]. 岩石力学与工程学报,2010,29(3):640-648. (LU Y L, WANG L G, YANG F, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(3):640-648. (in Chinese)

    LU Y L, WANG L G, YANG F, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 640-648.
    [8] 周家文, 徐卫亚, 李明卫, 等. 岩石应变软化模型在深埋隧洞数值分析中的应用[J]. 岩石力学与工程学报,2009,28(6):1116-1127. (ZHOU J W, XU W Y, LI M W, et al. Application of rock strain softening model to numerical analysis of deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1116-1127. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.005

    ZHOU J W, XU W Y, LI M W, et al. Application of rock strain softening model to numerical analysis of deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1116-1127. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.005
    [9] 张 帅, 王俊杰, 张海龙, 等. 考虑刚度与强度劣化的洞室围岩弹塑性分析[J]. 岩土工程学报,2024,46(1):101-109. (ZHANG S, WANG J J, ZHANG H L, et al. Elastoplastic analysis of surrounding rock of caverns considering deterioration of stiffness and strength[J]. Chinese Journal of Geotechnical Engineering,2024,46(1):101-109. (in Chinese)

    ZHANG S, WANG J J, ZHANG H L, et al. Elastoplastic analysis of surrounding rock of caverns considering deterioration of stiffness and strength[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 101-109. (in Chinese)
    [10] 王渭明, 赵增辉, 王 磊. 考虑刚度和强度劣化时弱胶结软岩巷道围岩的弹塑性损伤分析[J]. 采矿与安全工程学报,2013,30(5):679-685. (WANG W M, ZHAO Z H, WANG L. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering,2013,30(5):679-685. (in Chinese)

    WANG W M, ZHAO Z H, WANG L. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 679-685. (in Chinese)
    [11] 王延宁. 深部巷道围岩应变软化机理与稳定性控制研究[D]. 徐州: 中国矿业大学, 2018. (WANG Y N. Study on strain softening mechanism and stability control of deep roadway surrounding rock[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)

    WANG Y N. Study on strain softening mechanism and stability control of deep roadway surrounding rock[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)
    [12] 赖 勇. 围压对杨氏模量的影响分析[J]. 重庆交通大学学报(自然科学版),2009,28(2):246-249,278. (LAI Y. Effect analysis of confining pressure on Young’s modulus[J]. Journal of Chongqing Jiaotong University (Natural Science),2009,28(2):246-249,278. (in Chinese)

    LAI Y. Effect analysis of confining pressure on Young’s modulus[J]. Journal of Chongqing Jiaotong University (Natural Science), 2009, 28(2): 246-249,278. (in Chinese)
    [13] 尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报,2003,22(1):53-60. (YOU M Q. Effect of confining pressure on the Young’s modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):53-60. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.01.010

    YOU M Q. Effect of confining pressure on the Young’s modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.01.010
    [14] 周 辉, 杨凡杰, 张传庆, 等. 考虑围压效应的大理岩弹塑性耦合力学模型研究[J]. 岩石力学与工程学报,2012,31(12):2389-2399. (ZHOU H, YANG F J, ZHANG C Q, et al. An elastoplastic coupling mechanical model for marble considering confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2389-2399. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.002

    ZHOU H, YANG F J, ZHANG C Q, et al. An elastoplastic coupling mechanical model for marble considering confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2389-2399. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.002
    [15] 张 凯. 脆性岩石力学模型与流固耦合机理研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010. (ZHANG K. Study on mechanical model and fluid-solid coupling mechanism for brittle rocks[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2010. (in Chinese)

    ZHANG K. Study on mechanical model and fluid-solid coupling mechanism for brittle rocks[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2010. (in Chinese)
    [16] 李 斌. 高围压条件下岩石破坏特征及强度准则研究[D]. 武汉: 武汉科技大学, 2015. (LI B. Study on rock failure characteristics and rock strength criteria under high confining pressure[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese)

    LI B. Study on rock failure characteristics and rock strength criteria under high confining pressure[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese)
    [17] 刘泉声, 刘恺德, 朱杰兵, 等. 高应力下原煤三轴压缩力学特性研究[J]. 岩石力学与工程学报,2014,33(1):24-34. (LIU Q S, LIU K D, ZHU J B, et al. Study of mechanical properties of raw coal under high stress with triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):24-34. (in Chinese)

    LIU Q S, LIU K D, ZHU J B, et al. Study of mechanical properties of raw coal under high stress with triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 24-34. (in Chinese)
    [18] 张培源, 张晓敏, 汪天庚. 岩石弹性模量与弹性波速的关系[J]. 岩石力学与工程学报,2001,20(6):785-788. (ZHANG P Y, ZHANG X M, WANG T G. Relationship between elastic moduli and wave velocities in rock[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(6):785-788. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.006

    ZHANG P Y, ZHANG X M, WANG T G. Relationship between elastic moduli and wave velocities in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 785-788. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.006
    [19] 王如江, 任 猛, 刘劲松, 等. 岩石波速与强度参数的相关性研究[J]. 矿业研究与开发,2021,41(9):87-91. (WANG R J, REN M, LIU J S, et al. Study on correlation between rock wave velocity and strength parameters[J]. Mining Research and Development,2021,41(9):87-91. (in Chinese)

    WANG R J, REN M, LIU J S, et al. Study on correlation between rock wave velocity and strength parameters[J]. Mining Research and Development, 2021, 41(9): 87-91. (in Chinese)
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-04-18
  • 录用日期:  2024-05-09
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-08

目录

    /

    返回文章
    返回