Engineering analysis on the mechanisms of buckling and toppling of bedding rock slope
-
摘要: 大量工程实践表明,非滑动破坏的顺层边坡可能存在溃屈和倾倒的变形、破坏机制。为研究两种特殊机制的产生机理和支护方案,通过离散元数值模拟方法和典型工程项目的相关数据分析,结合层状岩体的破坏试验,研究了顺层边坡产生溃屈和倾倒的基本条件及变形、破坏规律。结果表明:对于顺层高边坡,当边坡坡角与岩层层面倾角相同或接近时,在表层层状岩体自重作用下,坡脚可能出现屈服并产生浅表垮塌,进而引发边坡产生溃屈破坏;当边坡坡角小于岩层层面倾角时,边坡可能产生倾倒变形;顺层边坡倾倒变形与后续的破坏模式需分开看待,最终的破坏形式受边坡变形演化的影响,存在动态变化过程。对于存在溃屈和倾倒变形破坏机制的顺层岩质边坡,建议在坡脚设置大刚度支撑结构进行支护。Abstract: A large number of engineering practices show that the deformation and damage mechanisms of toppling and buckling may exist in the non-sliding damaged bedding slopes. To study the generation mechanism and support scheme of two special mechanisms, the basic conditions, deformation, and failure laws of bedding slopes were studied through discrete element numerical simulation method and relevant data analysis of typical engineering projects, combined with failure tests of layered rock masses. The results show that: for high-rise slopes, when the slope angle is the same or close to the dip angle of the rock layer, the foot of the slope may yield and shallow collapse under the self-weight of the surface layered rock mass, leading to the buckling failuare of the slope; when the slope angle is smaller than the dip angle of the rock layer, the slope may undergo toppling deformation; the toppling deformation and subsequent failure modes of layered slopes need to be viewed separately, and the final failure form is influenced by the evolution of slope deformation and undergoes dynamic changes. For layered rock slopes with mechanisms of buckling and toppling deformation, it is recommended to install high-stiffness support structures at the foot of the slope for support.
-
表 1 岩体及层面参数
类别 密度
/(kg·m−3)法向刚度
/(Pa·m−1)切向刚度
/(Pa·m−1)c
/kPaφ
/(°)层面 2450 5e9 2e9 60 24 岩体 700 33 -
[1] 李 滨, 王国章, 冯 振, 等. 陡倾层状岩质斜坡极限平衡稳定分析[J]. 岩土工程学报,2015,37(5):839-846. (LI B, WANG G Z, FENG Z, et al. Limit equilibrium and stability analysis of steep stratified rock slope[J]. Chinese Journal of Geotechnical Engineering,2015,37(5):839-846. (in Chinese) doi: 10.11779/CJGE201505009LI B, WANG G Z, FENG Z, et al. Limit equilibrium and stability analysis of steep stratified rock slope[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 839-846. (in Chinese) doi: 10.11779/CJGE201505009 [2] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报,2004,23(19):3381-3388. (ZHENG Y R, ZHAO S Y. Application of strength reduction fem in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3381-3388. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.19.029ZHENG Y R, ZHAO S Y. Application of strength reduction fem in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.19.029 [3] 邹宗兴, 唐辉明, 熊承仁, 等. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报,2012,31(11):2222-2231. (ZOU Z X, TANG H M, XIONG C R, et al. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2222-2231. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.010ZOU Z X, TANG H M, XIONG C R, et al. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2222-2231. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.010 [4] 杨金旺, 陈 媛, 张 林, 等. 基于地质力学模型试验综合法的顺层岩质高边坡稳定性研究[J]. 岩石力学与工程学报,2018,37(1):131-140. (YANG J W, CHEN Y, ZHANG L, et al. Stability of high bedding slope of rock based on comprehensive geo-mechanical model test[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):131-140. (in Chinese)YANG J W, CHEN Y, ZHANG L, et al. Stability of high bedding slope of rock based on comprehensive geo-mechanical model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 131-140. (in Chinese) [5] 李得建, 贾文韬, 程 肖, 等. 阶梯状滑动断续节理顺层边坡稳定性分析[J]. 岩土工程学报,2022,44(11):2125-2134. (LI D J, JIA W T, CHENG X, et al. Stability of stepped sliding of bedding rock slopes with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering,2022,44(11):2125-2134. (in Chinese) doi: 10.11779/CJGE202211019LI D J, JIA W T, CHENG X, et al. Stability of stepped sliding of bedding rock slopes with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2125-2134. (in Chinese) doi: 10.11779/CJGE202211019 [6] GOODMAN R E, KIEFFER D S. Behavior of rock in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(8):675-684. doi: 10.1061/(ASCE)1090-0241(2000)126:8(675) [7] BRABB E E, HARROD B L. Landslides: extent and economic significance: proceedings 28th international geological congress symposium on landslides[M]. Rotterdam: Balkema, 1989. [8] 黄志全, 李纪良, 王 闯, 等. 强震作用下陡倾顺层岩质边坡动力响应与破坏模式研究[J]. 工程地质学报,2023,31(1):217-227. (HUANG Z Q, LI J L, WANG C, et al. Study on dynamic response and failure mode of steep bedding rock slope under strong earthquake[J]. Journal of Engineering Geology,2023,31(1):217-227. (in Chinese)HUANG Z Q, LI J L, WANG C, et al. Study on dynamic response and failure mode of steep bedding rock slope under strong earthquake[J]. Journal of Engineering Geology, 2023, 31(1): 217-227. (in Chinese) [9] 安晓凡. 岩质边坡多层弯曲倾倒分析方法研究[D]. 西安: 西安理工大学, 2020. (AN X F. Research on analysis method for multi-layer flexural toppling of rock slope[D]. Xi’an: Xi’an University of Technology, 2020. (in Chinese)AN X F. Research on analysis method for multi-layer flexural toppling of rock slope[D]. Xi’an: Xi’an University of Technology, 2020. (in Chinese) [10] 李斌. 陡倾顺层软岩边坡破坏机制及稳定性研究[D]. 重庆: 重庆大学, 2019. (LI B. Research on the failure mechanism of under-dip soft rock slopes and stability analysis[D]. Chongqing: Chongqing University, 2019. (in Chinese)LI B. Research on the failure mechanism of under-dip soft rock slopes and stability analysis[D]. Chongqing: Chongqing University, 2019. (in Chinese) [11] 蔡俊超. 反倾岩质边坡柔性弯曲型倾倒变形全过程力学行为及稳定性研究[D]. 成都: 成都理工大学, 2020. (CAI J C. Research on mechanical behavior and stability of anti-dip rock slope in the whole process of flexible flexural toppling[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese)CAI J C. Research on mechanical behavior and stability of anti-dip rock slope in the whole process of flexible flexural toppling[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese) [12] GOODMAN R E, BRAY J W. Toppling of rock slopes[C]//Proceedings of ASCE Specialty Conference on Rock Engineering for Foundations and Slopes. Colorado: ASCE, 1976: 201-234. [13] CRUDEN D M, HU X Q. Topples on underdip slopes in the Highwood pass, Alberta, Canada[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1994,27(1):57-68. doi: 10.1144/GSL.QJEGH.1994.027.P1.08 [14] 孙云志, 苏传洋. 500 m级顺层陡倾特高人工边坡破坏模式分析与开挖支护设计[J]. 水利水电快报,2022,43(2):17-20,27. (SUN Y Z, SU C Y. Failure mode and excavation support of 500 m grade steeply-inclined bedding rock mass of an ultra-high artificial slope[J]. Express Water Resources & Hydropower Information,2022,43(2):17-20,27. (in Chinese)SUN Y Z, SU C Y. Failure mode and excavation support of 500 m grade steeply-inclined bedding rock mass of an ultra-high artificial slope[J]. Express Water Resources & Hydropower Information, 2022, 43(2): 17-20,27. (in Chinese) [15] 闫国强, 殷跃平, 黄波林, 等. 三峡库区顺层灰岩岸坡劣化–溃屈灾变机制研究[J]. 岩土力学,2022,43(9):2568-2580. (YAN G Q, YIN Y P, HUANG B L, et al. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area[J]. Rock and Soil Mechanics,2022,43(9):2568-2580. (in Chinese)YAN G Q, YIN Y P, HUANG B L, et al. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2022, 43(9): 2568-2580. (in Chinese) [16] 吴朋宇, 张志红, 戴福初, 等. 顺层岩质边坡溃屈变形机制及失稳判定方法[J]. 吉林大学学报(地球科学版),2022,52(2):517-525. (WU P Y, ZHANG Z H, DAI F C, et al. Buckling deformation mechanism and instability judgment method of bedding rock slope[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):517-525. (in Chinese)WU P Y, ZHANG Z H, DAI F C, et al. Buckling deformation mechanism and instability judgment method of bedding rock slope[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 517-525. (in Chinese) [17] 李 帅, 陈军斌, 赵庆磊. 不同加载方式下页岩强度与变形的尺度效应规律试验研究[J]. 石油钻探技术,2020,48(5):39-48. (LI S, CHEN J B, ZHAO Q L, et al. Experimental study on the scale effect law of shale strength and deformation under different loading modes[J]. Petroleum Drilling Techniques,2020,48(5):39-48. (in Chinese) doi: 10.11911/syztjs.2020075LI S, CHEN J B, ZHAO Q L, et al. Experimental study on the scale effect law of shale strength and deformation under different loading modes[J]. Petroleum Drilling Techniques, 2020, 48(5): 39-48. (in Chinese) doi: 10.11911/syztjs.2020075 [18] 徐国文. 层状千枚岩地层隧道稳定性分析[D]. 成都: 西南交通大学, 2017. (XU G W. Stability analysis of tunnels in layered phyllite stratum[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)XU G W. Stability analysis of tunnels in layered phyllite stratum[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese) [19] 李德建, 祁 浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[J]. 矿业科学学报,2020,5(2):150-159. (LI D J, QI H, LI C X, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology,2020,5(2):150-159. (in Chinese)LI D J, QI H, LI C X, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology, 2020, 5(2): 150-159. (in Chinese) [20] 王 辉, 李 勇, 曹树刚, 等. 基于巴西劈裂实验的层状页岩断裂特征试验研究[J]. 采矿与安全工程学报,2020,37(3):604-612. (WANG H, LI Y, CAO S G, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests[J]. Journal of Mining & Safety Engineering,2020,37(3):604-612. (in Chinese)WANG H, LI Y, CAO S G, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 604-612. (in Chinese) [21] 幸 芊. 一种多功能框架式抗滑棚洞的应用研究[J]. 岩土工程技术,2022,36(2):145-150. (XING Q. Application of a new multi-functional frame shed tunnel[J]. Geotechnical Engineering Technique,2022,36(2):145-150. (in Chinese) doi: 10.3969/j.issn.1007-2993.2022.02.011XING Q. Application of a new multi-functional frame shed tunnel[J]. Geotechnical Engineering Technique, 2022, 36(2): 145-150. (in Chinese) doi: 10.3969/j.issn.1007-2993.2022.02.011 [22] 幸 芊. 超高陡倾顺层软岩边坡“抗滑棚洞”结构形式优化研究[D]. 重庆: 重庆交通大学, 2023. (XING Q. Research on structural optimization of "anti-sliding shed tunnel" for super high steep dip bedding soft rock slope[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese)XING Q. Research on structural optimization of "anti-sliding shed tunnel" for super high steep dip bedding soft rock slope[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese) -