留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顶管淤泥改良道路底基层材料配方机理研究

田红云 邓庆凯 孟文诚 邹纳川 董祎挈 陆海军

田红云, 邓庆凯, 孟文诚, 邹纳川, 董祎挈, 陆海军. 顶管淤泥改良道路底基层材料配方机理研究[J]. 岩土工程技术, 2025, 39(1): 150-158. doi: 10.20265/j.cnki.issn.1007-2993.2024-0012
引用本文: 田红云, 邓庆凯, 孟文诚, 邹纳川, 董祎挈, 陆海军. 顶管淤泥改良道路底基层材料配方机理研究[J]. 岩土工程技术, 2025, 39(1): 150-158. doi: 10.20265/j.cnki.issn.1007-2993.2024-0012
Tian Hongyun, Deng Qingkai, Meng Wencheng, Zou Nachuan, Dong Yiqie, Lu Haijun. Formulation mechanism of bottom layer material for road improvement by top pipe sludge[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 150-158. doi: 10.20265/j.cnki.issn.1007-2993.2024-0012
Citation: Tian Hongyun, Deng Qingkai, Meng Wencheng, Zou Nachuan, Dong Yiqie, Lu Haijun. Formulation mechanism of bottom layer material for road improvement by top pipe sludge[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 150-158. doi: 10.20265/j.cnki.issn.1007-2993.2024-0012

顶管淤泥改良道路底基层材料配方机理研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0012
基金项目: 湖北省自然科学基金(2022CFA011;2023AFD214)
详细信息
    作者简介:

    田红云,女,1975年生,硕士,正高级经济师,主要研究方向为工程固体废弃物回收与资源化利用、城市河湖生态治理。E-mail:tianhy999@163.com

    通讯作者:

    陆海军,男,1979年生,博士,教授,主要研究方向为固体废物资源化处理。E-mail:lhj_whpu@163.com

  • 中图分类号: TU99

Formulation mechanism of bottom layer material for road improvement by top pipe sludge

  • 摘要: 顶管施工中会产生大量淤泥,且这些淤泥具有含水率高、稳定性差、颗粒分布不均匀等特点。淤泥固化技术是解决工程施工废弃物再利用的重要手段,为提升淤泥固结体强度,探究稳定化药剂高效配方,采用胶砂强度试验、无侧限抗压强度试验、X射线衍射分析、比表面及孔径分析试验、FTIR傅里叶红外光谱分析,检测稳定化药剂和固结体强度,探究固结体物质组成变化规律、内部孔隙度变化和微观结构中分子键的变化。结果表明:以建筑垃圾、磷石膏和矿渣作为原料,选出满足国内固废基用于道路底基层材料强度要求的配比(顶管淤泥∶建筑垃圾∶磷石膏∶矿渣=0.40∶0.55∶0.015∶0.052),养护28 d后试样的含水率为1.32%~2.89%,抗压强度为3.3~6.6 MPa。

     

  • 图  1  现场顶管淤泥

    图  2  顶管淤泥的XRD图谱

    图  3  顶管淤泥的粒径微分分布图谱

    图  4  D1,D2,D3,D4,D5,D6抗压强度图

    图  5  道路底基层材料固结体的抗压强度随养护时间变化

    图  6  回弹模量对比图

    图  7  回弹位移对比图

    图  8  养护28 d后的浸水与未浸水试块强度对比图

    图  9  D6-D1,D6-D3,D6-D5,D6-D6试样在自然养护条件下28 d之后的XRD图

    图  10  吸附–脱附等温线

    图  11  道路底基层材料孔融–孔径分布曲线

    图  12  D6-D1,D6-D3,D6-D5,D6-D6试样在自然养护条件下28 d之后的FT-IR图谱

    表  1  顶管淤泥化学成分组成

    成分 SiO2 Al2O3 Fe2O3 CaO P2O5 MgO 其它
    占比/% 57.31 17.44 9.65 6.95 3.17 2.24 3.24
    下载: 导出CSV

    表  2  建筑垃圾化学成分组成表

    成分SiO2CaOAl2O3Fe2O3SO3其它
    占比/%39.8535.098.936.033.097.01
    下载: 导出CSV

    表  3  顶管淤泥稳定化药剂设计配比表

    序号 成分质量占比/%
    矿渣 磷石膏 激发剂 活化剂
    D1 62 20 15 3
    D2 57 20 20 3
    D3 52 20 25 3
    D4 62 15 20 3
    D5 57 15 25 3
    D6 52 15 30 3
    下载: 导出CSV

    表  4  道路底基层材料配比表(质量比) % 

    编号稳定化药剂建筑垃圾顶管淤泥外掺水
    A1861359
    A28633310
    A31058378
    A41060359
    A5866308
    A610554010
    下载: 导出CSV

    表  5  道路底基层材料孔隙结构参数

    样品比表面积 /(m2·g−1)平均孔容 /(cm3·g−1)平均孔径 /nm
    顶管淤泥7.21370.0178499.8972
    D6-A19.93030.02506110.0949
    D6-A311.35950.02874310.1213
    D6-A510.24980.02855011.1419
    D6-A610.28610.02842711.0546
    下载: 导出CSV
  • [1] 再 协. 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用,2021,39(1):4. (China Resource Recycling Association. Annual report on solid waste pollution prevention and control in major and medium sized cities in China in 2020[J]. China Resources Comprehensive Utilization,2021,39(1):4. (in Chinese)

    China Resource Recycling Association. Annual report on solid waste pollution prevention and control in major and medium sized cities in China in 2020[J]. China Resources Comprehensive Utilization, 2021, 39(1): 4.
    [2] WANG L, YAN D Y, XIONG Y, et al. A review of the challenges and application of public-private partnership model in Chinese garbage disposal industry[J]. Journal of Cleaner Production,2019,230:219-229. doi: 10.1016/j.jclepro.2019.05.028
    [3] CHETRI J K, REDDY K R. Advancements in municipal solid waste landfill cover system: A review[J]. Journal of the Indian Institute of Science,2021,101(4):557-558. doi: 10.1007/s41745-021-00229-1
    [4] 程福周, 雷学文, 孟庆山, 等. 高含水率疏浚淤泥固化的力学性质试验研究[J]. 科学技术与工程,2015,15(1):295-299. (CHENG F Z, LEI X W, MENG Q S, et al. Experimental study on the mechanical properties of solidified dredging silt of high moisture content[J]. Science Technology and Engineering,2015,15(1):295-299. (in Chinese)

    CHENG F Z, LEI X W, MENG Q S, et al. Experimental study on the mechanical properties of solidified dredging silt of high moisture content[J]. Science Technology and Engineering, 2015, 15(1): 295-299. (in Chinese)
    [5] 张志勇, 严 娟. 城市河道淤泥固化技术试验研究[J]. 人民长江,2021,52(12):210-213. (ZHANG Z Y, YAN J. Experimental study on dredged material solidification technology for urban rivers[J]. Yangtze River,2021,52(12):210-213. (in Chinese)

    ZHANG Z Y, YAN J. Experimental study on dredged material solidification technology for urban rivers[J]. Yangtze River, 2021, 52(12): 210-213. (in Chinese)
    [6] PROVIS J L, PALOMO A, SHI C J. Advances in understanding alkali-activated materials[J]. Cement & Concrete Research,2015,78:110-125.
    [7] WU C H, CHEN H J, CHI J H. Study on the reuse of in situ solidified reservoir sediment[C]//Proceedings of the 8th International Conference on Informatics, Environment, Energy and Applications. Osaka, Japan: ACM, 2019: 11-14.
    [8] 邹维列, 贺 扬, 张凤德, 等. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版),2017,51(11):2182-2188. (ZOU W L, HE Y, ZHAGN F D, et al. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement[J]. Journal of Zhejiang University (Engineering Science),2017,51(11):2182-2188. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.11.012

    ZOU W L, HE Y, ZHAGN F D, et al. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(11): 2182-2188. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.11.012
    [9] 陈海斌, 郑世华, 钟煌亮. 湖泊疏浚淤泥固化试验研究[J]. 水运工程,2012,20(12):230-233. (CHEN H B, ZHENG S H, ZHONG H L. Solidification test investigation on lake's dredging sludge[J]. Port & Waterway Engineering,2012,20(12):230-233. (in Chinese) doi: 10.3969/j.issn.1002-4972.2012.12.047

    CHEN H B, ZHENG S H, ZHONG H L. Solidification test investigation on lake's dredging sludge[J]. Port & Waterway Engineering, 2012, 20(12): 230-233. (in Chinese) doi: 10.3969/j.issn.1002-4972.2012.12.047
    [10] 丁 慧, 孙秀丽, 刘文化, 等. 固化疏浚淤泥作路基材料工程特性试验研究[J]. 土木建筑与环境工程, 2017, 39(2): 11-18. (DING H, SUN X L, LIU W H, et al. Experimental analysis of engineering properties of solidified sludge as roadbed filling material[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(2): 11-18. (in Chinese)

    DING H, SUN X L, LIU W H, et al. Experimental analysis of engineering properties of solidified sludge as roadbed filling material[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(2): 11-18. (in Chinese)
    [11] 王宏伟, 王东星, 贺 扬. MgO改性淤泥固化土压缩特性试验[J]. 中南大学学报(自然科学版),2017,48(8):2133-2141. (WANG H W, WANG D X, HE Y. Experimental study on compressibility behavior of solidified dredged sludge with reactive MgO[J]. Journal of Central South University (Science and Technology),2017,48(8):2133-2141. (in Chinese)

    WANG H W, WANG D X, HE Y. Experimental study on compressibility behavior of solidified dredged sludge with reactive MgO[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2133-2141. (in Chinese)
    [12] 甘雅雄. 早强型材料淤泥固化试验研究[J]. 科学技术与工程,2015,15(2):270-274,283. (GAN Y X. Experimental study of solidification of dredged clays by adding early-strength type material[J]. Science Technology and Engineering,2015,15(2):270-274,283. (in Chinese)

    GAN Y X. Experimental study of solidification of dredged clays by adding early-strength type material[J]. Science Technology and Engineering, 2015, 15(2): 270-274,283. (in Chinese)
    [13] 胡孝彭, 赵仲辉. 固化淤泥持水特性的微观机理研究[J]. 人民长江,2017,48(13):81-84,99. (HU X P, ZHAO Z H. Micro-mechanism of water retention property of solidified dredged material[J]. Yangtze River,2017,48(13):81-84,99. (in Chinese)

    HU X P, ZHAO Z H. Micro-mechanism of water retention property of solidified dredged material[J]. Yangtze River, 2017, 48(13): 81-84,99. (in Chinese)
    [14] 丁建文, 吴学春, 李 辉, 等. 疏浚淤泥固化土的压缩特性与结构屈服应力[J]. 工程地质学报,2012,20(4):627-632. (DING J W, WU X C, LI H, et al. Compression properties and structure yield stress for solidified soil composing of dredged clays[J]. Journal of Engineering Geology,2012,20(4):627-632. (in Chinese)

    DING J W, WU X C, LI H, et al. Compression properties and structure yield stress for solidified soil composing of dredged clays[J]. Journal of Engineering Geology, 2012, 20(4): 627-632. (in Chinese)
    [15] WANG H W, ZENTAR R, WANG D X. Predicting the compaction parameters of solidified dredged fine sediments with statistical approach[J]. Marine Georesources & Geotechnology,2023,41(2):195-210.
    [16] WU X T, SUN J S, QI Y, et al. Pore and compression characteristics of clay solidified by ionic soil stabilizer[J]. Bulletin of Engineering Geology and the Environment,2021,80(6):5003-5019. doi: 10.1007/s10064-021-02145-1
    [17] ZHANG X F, ZHANG Y M, LIU X, et al. Shakedown behavior of yellow river alluvial silt stabilized with lignin-lime combined additive[J]. Journal of Materials in Civil Engineering,2020,32(1):04019318. doi: 10.1061/(ASCE)MT.1943-5533.0002954
    [18] 王江营, 阳 滔, 张贵金, 等. 超高含水率湖相淤泥固化试验及填筑性能分析[J]. 硅酸盐通报,2020,39(8):2691-2698. (WANG J Y, YANG T, ZHANG G J, et al. Curing experiment and filling performance of ultra-high water content lacustrine sludge[J]. Bulletin of the Chinese Ceramic Society,2020,39(8):2691-2698. (in Chinese)

    WANG J Y, YANG T, ZHANG G J, et al. Curing experiment and filling performance of ultra-high water content lacustrine sludge[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2691-2698. (in Chinese)
    [19] 李世汩, 陈文峰, 夏新星, 等. 低碱性环保固化剂调理淤泥的板框压滤脱水试验研究[J]. 长江科学院院报,2023,40(3):46-51. (LI S G, CHEN W F, XIA X X, et al. Experimental study on dewatering of plate-and-frame filter press for sludge treatment with a low-alkaline environmental modifier[J]. Journal of Changjiang River Scientific Research Institute,2023,40(3):46-51. (in Chinese) doi: 10.11988/ckyyb.20211150

    LI S G, CHEN W F, XIA X X, et al. Experimental study on dewatering of plate-and-frame filter press for sludge treatment with a low-alkaline environmental modifier[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(3): 46-51. (in Chinese) doi: 10.11988/ckyyb.20211150
    [20] LIU Y, LU H J, LIU M Y, et al. Microanalytical characterizations, mechanical strength and water resistance performance of solidified dredged sludge with industrial solid waste and architecture residue soil[J]. Case Studies in Construction Materials,2022,17:e01492. doi: 10.1016/j.cscm.2022.e01492
    [21] 黎家国, 何旭东, 沈建生, 等. 废渣型固化剂对软土固化的研究与应用[J]. 低温建筑技术,2021,43(8):119-122. (LI J G, HE X D, SHEN J S, et al. Research and application of waste residue curing agent for soft soil solidification[J]. Low Temperature Architecture Technology,2021,43(8):119-122. (in Chinese)

    LI J G, HE X D, SHEN J S, et al. Research and application of waste residue curing agent for soft soil solidification[J]. Low Temperature Architecture Technology, 2021, 43(8): 119-122. (in Chinese)
    [22] SHEN J S, XU Y D, CHEN J, et al. Study on the stabilization of a new type of waste solidifying agent for soft soil[J]. Materials,2019,12(5):826. doi: 10.3390/ma12050826
    [23] SHU B A, CHEN W Z, YANG T Y, et al. Study on laboratory and engineering application of multi source solid waste based soft soil solidification materials[J]. Case Studies in Construction Materials,2022,17:e01465. doi: 10.1016/j.cscm.2022.e01465
    [24] LI D D, ZHOU X G, MO J B. Experimental study on the Solidification of silt by composite curing agent with fiber[J]. IOP Conference Series: Earth and Environmental Science,2020,587(1):012014. doi: 10.1088/1755-1315/587/1/012014
    [25] PENG L, CHEN B. Study on the basic properties and mechanism of waste sludge solidified by magnesium phosphate cement containing different active magnesium oxide[J]. Construction and Building Materials,2021,281:122609. doi: 10.1016/j.conbuildmat.2021.122609
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-06
  • 修回日期:  2024-04-24
  • 录用日期:  2024-05-09
  • 刊出日期:  2025-02-21

目录

    /

    返回文章
    返回