Optimization of flat ratio and selection of construction method for shallow buried super-large section tunnels
-
摘要: 对于浅埋超大断面扁平结构隧道而言,合理的断面设计和工法选择关乎隧道建设的安全性。采用有限差分计算软件FLAC 3D对深汕合作区通港大道2号隧道进行扁平率和工法优化设计。研究了4种不同扁平率和2种不同工法对隧道围岩变形和应力分布的影响,运用熵权法确定塑性区面积、拱顶沉降、地表沉降等指标的权重,对各方案进行综合评分和比选,提出所研究隧道工程的最优扁平率和工法匹配方案。数值模拟结果表明:采用扁平率为0.65的断面设计和双侧壁导坑法开挖是最优的方案。现场施工监测数据与数值模拟结果有较高的吻合度,验证了所建立的数值模型的准确性和所提出的优化施工方案的可行性。研究结果可为浅埋超大断面扁平结构隧道的建设提供理论支撑和数据参考。Abstract: For shallow-buried oversized cross-section flat structure tunnels, reasonable cross-section design and construction method selection are crucial for ensuring tunnel construction safety. In this study, finite difference computation software FLAC 3D was employed to optimize the flat ratio and construction method for Tunnel No.2 of Tonggang Road in the Shenzhen-Shanwei Cooperation Zone. The effects of four different flat ratios and two distinct construction methods on the deformation and stress distribution of the surrounding rock were analyzed, and the entropy weight method was utilized to determine the weights of indicators such as plastic zone area, vault settlement, and ground settlement. Each scheme was evaluated through comprehensive scoring and comparison, leading to the proposal of the optimal flat ratio and construction method for the studied tunnel project. Numerical simulation results indicated that a section design with a flat ratio of 0.65 combined with the double-side drift excavation method represents the optimal solution. The high consistency between field construction monitoring data and numerical simulation results was demonstrated, validating the accuracy of the established numerical model and the feasibility of the proposed optimized construction scheme. The findings provide theoretical support and data references for the construction of shallow buried super-large sections of flat structure tunnels.
-
Key words:
- super-large section /
- flat ratio /
- double side drift method /
- CD method /
- comprehensive assessment
-
表 1 V级围岩材料参数
指标 参数 弹性模量/ GPa 2 泊松比 0.39 黏聚力/ MPa 0.20 内摩擦角/(°) 25 密度/ (kg·m−3) 2000 抗拉强度/ MPa 0.57 表 2 初期支护参数
支护措施 喷射混凝土 锚杆 钢拱架 型号 C25 D25中空注浆锚杆 HW200b型钢 尺寸和间距 厚0.3 m 长5 m,环距1 m,
纵距0.3 m纵距0.5 m 弹性模量/ GPa 28 206 206 泊松比 0.2 0.25 0.25 密度/ (kg·m–3) 2400 7850 7850 表 3 隧道各部位主应力
kPa 指标 部位 方案 A0.50 A0.55 A0.60 A0.65 B0.50 B0.55 B0.60 B0.65 最大主应力 拱顶 34.07 17.60 −15.94 −31.78 −14.85 −48.35 −56.03 −68.42 拱底 21.31 17.26 12.57 6.25 −1.29 −4.47 −8.06 −7.86 左拱腰 −183.82 −184.08 −122.30 −134.34 −103.31 −119.49 −130.29 −84.00 右拱腰 −165.00 −187.86 −153.15 −142.69 −122.37 −113.87 −122.95 −80.16 左拱脚 −428.31 −445.87 −464.91 −484.59 −417.48 −447.74 −459.70 −485.59 右拱脚 −467.90 −473.36 −488.41 −510.55 −449.34 −469.33 −480.90 −513.42 最小主应力 拱顶 −191.69 −204.15 −218.32 −212.77 −48.76 −108.27 −138.23 −169.76 拱底 −87.70 −137.72 −156.55 −192.21 −62.07 −77.14 −95.91 −121.14 左拱腰 −854.72 −858.47 −828.43 −780.14 −892.59 −870.88 −871.84 −763.75 右拱腰 −847.55 −853.26 −827.48 −799.02 −834.70 −855.45 −870.31 −752.81 左拱脚 −1346.70 −1354.24 −1354.51 −1366.79 −1391.02 −1362.01 −1371.47 −1416.59 右拱脚 −1306.26 −1298.95 −1291.88 −1305.29 −1379.11 −1339.15 −1345.58 −1389.06 注:正值代表拉应力,负值代表压应力。 表 4 各方案评判指标数据
指标 方案 A0.50 A0.55 A0.60 A0.65 B0.50 B0.55 B0.60 B0.65 塑性区面积/ m2 14.638 13.107 12.684 12.301 14.468 10.826 10.762 10.649 拱顶沉降/ mm 3.296 2.918 2.577 2.333 3.215 3.011 2.648 2.195 地表沉降/ mm 2.440 2.058 1.846 1.674 2.209 2.154 1.912 1.576 水平收敛/ mm 0.351 0.438 0.557 0.697 1.014 1.073 1.181 1.289 最大拉应力/ kPa 158.18 149.23 138.84 137.85 169.00 112.97 78.64 95.63 最大压应力/ kPa 1503.30 1499.80 1516.45 1547.41 1551.32 1550.96 1562.59 1616.67 表 5 各项指标客观权重
指标 权重/% 塑性区面积 18.627 拱顶沉降 19.118 地表沉降 13.450 水平收敛 19.099 最大拉应力 19.318 最大压应力 10.388 表 6 各方案的综合评价
排序 方案 综合评分 扁平率 开挖工法 1 B0.65 0.669 0.65 双侧壁导坑法 2 A0.65 0.644 0.65 CD法 3 B0.60 0.639 0.60 双侧壁导坑法 4 A0.60 0.611 0.60 CD法 5 A0.55 0.516 0.55 CD法 6 B0.55 0.494 0.55 双侧壁导坑法 7 A0.50 0.315 0.50 CD法 8 B0.50 0.172 0.50 双侧壁导坑法 表 7 计算值与实测值对比
指标 计算值 实测值 拱顶沉降/mm 2.195 2.1 水平收敛/mm 1.289 1.9 -
[1] 韩艳红, 赵 智, 张 良. 扁平率对大跨度隧道二衬结构力学特性的影响分析[J]. 公路交通科技(应用技术版),2020,16(9):49-52. (HAN Y H, ZHAO Z, ZHANG L. Analysis of the effect on mechanical properties of second lining structures of large span tunnels by flatness ratio[J]. Road Traffic Science and Technology (Applied Technology Edition),2020,16(9):49-52. (in Chinese)HAN Y H, ZHAO Z, ZHANG L. Analysis of the effect on mechanical properties of second lining structures of large span tunnels by flatness ratio[J]. Road Traffic Science and Technology (Applied Technology Edition), 2020, 16(9): 49-52. [2] 曲海锋. 扁平特大断面隧道修筑及研究概述[J]. 隧道建设,2009,29(2):166-171. (QU H F. An overview on construction and research of super-large cross-section tunnels with low height-span ratios[J]. Tunnel Construction,2009,29(2):166-171. (in Chinese)QU H F. An overview on construction and research of super-large cross-section tunnels with low height-span ratios[J]. Tunnel Construction, 2009, 29(2): 166-171. (in Chinese) [3] 彭 波. 超大断面扁平结构隧道开挖方法数值模拟及优化研究[J]. 北方交通,2021(10):78-82. (PENG B. Research on numerical simulation and optimization of excavation method for flat structure tunnel with super-large section[J]. Northern Communications,2021(10):78-82. (in Chinese)PENG B. Research on numerical simulation and optimization of excavation method for flat structure tunnel with super-large section[J]. Northern Communications, 2021(10): 78-82. (in Chinese) [4] 唐 颖. 金鸡山特大跨度连拱隧道设计[J]. 公路,2007(8):216-220. (TANG Y. Design of Jinji Mountain large-span continuous-arch tunnel[J]. Highway,2007(8):216-220. (in Chinese)TANG Y. Design of Jinji Mountain large-span continuous-arch tunnel[J]. Highway, 2007(8): 216-220. [5] 李志刚, 丁文其, 杨重存, 等. 扁平特大断面公路隧道核心土模拟与分析[J]. 地下空间与工程学报,2007,3(4):627-632. (LI Z G, DING W Q, YANG C C, et al. Simulation and analysis of core rock in flat and large span highway tunnel[J]. Chinese Journal of Underground Space and Engineering,2007,3(4):627-632. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.04.010LI Z G, DING W Q, YANG C C, et al. Simulation and analysis of core rock in flat and large span highway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(4): 627-632. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.04.010 [6] 皇 民, 金沐妍. 韩门大断面隧道预留核心土法施工中软弱围岩变形预测与控制[J]. 河南工程学院学报(自然科学版),2022,34(2):19-23. (HUANG M, JIN M Y. College on the deformation prediction and control of weak rock using core soil method in Hanmen large section tunnel[J]. Journal of Henan University of Engineering,2022,34(2):19-23. (in Chinese)HUANG M, JIN M Y. College on the deformation prediction and control of weak rock using core soil method in Hanmen large section tunnel[J]. Journal of Henan University of Engineering, 2022, 34(2): 19-23. (in Chinese) [7] 张俊儒, 徐 剑, 龚彦峰, 等. 单跨5车道公路隧道工法优化及施工力学特性研究[J]. 隧道建设(中英文),2021,41(5):831-840. (ZHANG J R, XU J, GONG Y F, et al. Study on construction method optimization and construction mechanical characteristics of a single-span five-lane highway tunnel[J]. Tunnel Construction,2021,41(5):831-840. (in Chinese)ZHANG J R, XU J, GONG Y F, et al. Study on construction method optimization and construction mechanical characteristics of a single-span five-lane highway tunnel[J]. Tunnel Construction, 2021, 41(5): 831-840. (in Chinese) [8] 滕兆宝. 超大断面隧道不同开挖工法力学特征研究[J]. 建筑技术开发,2022,49(23):92-96. (TENG Z B. Study on mechanical characteristics of different excavation methods for super large section tunnels[J]. Building Technology Development,2022,49(23):92-96. (in Chinese) doi: 10.3969/j.issn.1001-523X.2022.23.032TENG Z B. Study on mechanical characteristics of different excavation methods for super large section tunnels[J]. Building Technology Development, 2022, 49(23): 92-96. (in Chinese) doi: 10.3969/j.issn.1001-523X.2022.23.032 [9] 关宝树. 隧道工程施工要点集[M]. 2版. 北京: 人民交通出版社, 2011. (GUAN B S. Key points of tunnel construction[M]. 2nd ed. Beijing: China Communications Press, 2011. (in Chinese)GUAN B S. Key points of tunnel construction[M]. 2nd ed. Beijing: China Communications Press, 2011. (in Chinese) [10] 王 建, 胡潇月. 特大断面公路隧道扁平率数值分析[J]. 公路交通技术,2014(3):90-94. (WANG J, HU X Y. Numerical analysis for flatness ratio of king-size section highway tunnels[J]. Technology of Highway and Transport,2014(3):90-94. (in Chinese) doi: 10.3969/j.issn.1009-6477.2014.03.022WANG J, HU X Y. Numerical analysis for flatness ratio of king-size section highway tunnels[J]. Technology of Highway and Transport, 2014(3): 90-94. (in Chinese) doi: 10.3969/j.issn.1009-6477.2014.03.022 [11] 陈卫忠, 王 辉, 田洪铭. 浅埋破碎岩体中大跨隧道断面扁平率优化研究[J]. 岩石力学与工程学报,2011,30(7):1389-1395. (CHEN W Z, WANG H, TIAN H M. Study of flat ratio optimization of large-span tunnel section in shallow broken rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1389-1395. (in Chinese)CHEN W Z, WANG H, TIAN H M. Study of flat ratio optimization of large-span tunnel section in shallow broken rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1389-1395. (in Chinese) [12] 郭新新, 汪 波, 王永琪, 等. Ⅲ级围岩四车道隧道扁平率的合理取值[J]. 地下空间与工程学报,2019,15(6):1792-1799. (GUO X X, WANG B, WANG Y Q, et al. Optimal high-span ratio of four-lanes tunnel in rocks of grade Ⅲ[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1792-1799. (in Chinese)GUO X X, WANG B, WANG Y Q, et al. Optimal high-span ratio of four-lanes tunnel in rocks of grade Ⅲ[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1792-1799. (in Chinese) [13] 王 飞, 于海龙. 大断面公路隧道断面形状数值分析与研究[J]. 公路,2007(8):210-216. (WANG F, YU H L. Numerical analysis and research on shape of large-section highway tunnel[J]. Highway,2007(8):210-216. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.08.052WANG F, YU H L. Numerical analysis and research on shape of large-section highway tunnel[J]. Highway, 2007(8): 210-216. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.08.052 [14] 金星亮, 梁 斌, 焦 雷, 等. 浅埋扁平超大断面隧道断面优化设计研究[J]. 郑州大学学报(理学版),2017,49(4):112-118. (JIN X L, LIANG B, JIAO L, et al. On optimized super cross section design of tunnel with shallow flat[J]. Journal of Zhengzhou University (Natural Science Edition),2017,49(4):112-118. (in Chinese)JIN X L, LIANG B, JIAO L, et al. On optimized super cross section design of tunnel with shallow flat[J]. Journal of Zhengzhou University (Natural Science Edition), 2017, 49(4): 112-118. (in Chinese) [15] 中华人民共和国交通运输部. 公路隧道施工技术规范: JTG/T 3660–2020[S]. 北京: 人民交通出版社, 2020. (Ministry of Transport of the People’s Republic of China. Technical specifications for construction of highway tunnel: JTG/T 3660–2020[S]. Beijing: China Communications Press, 2020. (in Chinese)Ministry of Transport of the People’s Republic of China. Technical specifications for construction of highway tunnel: JTG/T 3660–2020[S]. Beijing: China Communications Press, 2020. (in Chinese) [16] 侯福金, 孙克国, 赵 然, 等. 超大断面小净距隧道工法适用性研究[J]. 土木工程学报,2017,50(S1):111-116. (HOU F J, SUN K G, ZHAO R, et al. Applicability study on construction method of super-large section neighborhood tunnel[J]. China Civil Engineering Journal,2017,50(S1):111-116. (in Chinese)HOU F J, SUN K G, ZHAO R, et al. Applicability study on construction method of super-large section neighborhood tunnel[J]. China Civil Engineering Journal, 2017, 50(S1): 111-116. (in Chinese) [17] 张福龙, 王丰仓, 张小强. 隧道浅埋段施工过程监测技术[J]. 岩土工程技术,2017,31(1):26-31. (ZHANG F L, WANG F C, ZHANG X Q. The monitoring technology of shallow buried tunnel construction[J]. Geotechnical Engineering Technique,2017,31(1):26-31. (in Chinese) doi: 10.3969/j.issn.1007-2993.2017.01.007ZHANG F L, WANG F C, ZHANG X Q. The monitoring technology of shallow buried tunnel construction[J]. Geotechnical Engineering Technique, 2017, 31(1): 26-31. (in Chinese) doi: 10.3969/j.issn.1007-2993.2017.01.007 [18] 张强勇, 李晓静, 杨为民. 紫坪铺高边坡稳定性的流固耦合计算分析[J]. 人民长江,2005,36(11):45-47. (ZHANG Q Y, LI X J, YANG W M. Computation analysis on fluid - solid coupling for the stability of Zipingpu high side slope[J]. Yangtze River,2005,36(11):45-47. (in Chinese) doi: 10.3969/j.issn.1001-4179.2005.11.017ZHANG Q Y, LI X J, YANG W M. Computation analysis on fluid - solid coupling for the stability of Zipingpu high side slope[J]. Yangtze River, 2005, 36(11): 45-47. (in Chinese) doi: 10.3969/j.issn.1001-4179.2005.11.017 [19] 王仁杰, 刘志强, 刘 阳, 等. 挤压性围岩大跨隧道扁平率优化研究[J]. 现代隧道技术,2020,57(S1):713-720. (WANG R J, LIU Z Q, LIU Y, et al. Optimization of span-ratio of large-span tunnel in squeezing surrounding rocks[J]. Modern Tunnelling Technology,2020,57(S1):713-720. (in Chinese)WANG R J, LIU Z Q, LIU Y, et al. Optimization of span-ratio of large-span tunnel in squeezing surrounding rocks[J]. Modern Tunnelling Technology, 2020, 57(S1): 713-720. (in Chinese) [20] 崔 亮, 李连营, 马乐民. FLAC3D在复杂工程条件下的应用[J]. 岩土工程技术,2019,33(2):79-83. (CUI L, LI L Y, MA L M. Application of FLAC3D under complex engineering conditions[J]. Geotechnical Engineering Technique,2019,33(2):79-83. (in Chinese)CUI L, LI L Y, MA L M. Application of FLAC3D under complex engineering conditions[J]. Geotechnical Engineering Technique, 2019, 33(2): 79-83. (in Chinese) [21] 武明静. 基于层次分析法的浅埋大跨城市隧道扁平率优化研究[J]. 施工技术,2017,46(11):77-81. (WU M J. Study on flat ratio optimization of large-span shallow buried city tunnel based on analytic hierarchy process[J]. Construction Technology,2017,46(11):77-81. (in Chinese)WU M J. Study on flat ratio optimization of large-span shallow buried city tunnel based on analytic hierarchy process[J]. Construction Technology, 2017, 46(11): 77-81. (in Chinese) [22] 吴舒天. 基于AHP对边坡挡土墙稳定性评价方法研究[J]. 岩土工程技术,2015,29(1):5-8,45. (WU S T. Study on stability evaluation method of slope retaining wall based on AHP[J]. Geotechnical Engineering Technique,2015,29(1):5-8,45. (in Chinese) doi: 10.3969/j.issn.1007-2993.2015.01.002WU S T. Study on stability evaluation method of slope retaining wall based on AHP[J]. Geotechnical Engineering Technique, 2015, 29(1): 5-8,45. (in Chinese) doi: 10.3969/j.issn.1007-2993.2015.01.002 [23] 范新宇, 贾志献, 白雪亮, 等. 熵权模糊综合评价模型在极软岩隧洞围岩分级中的应用[J]. 工程地质学报,2019,27(6):1236-1243. (FAN X Y, JIA Z X, BAI X L, et al. Classification of extremely soft rock tunnels using comprehensive evaluation model of entropy-weighted fuzzy[J]. Journal of Engineering Geology,2019,27(6):1236-1243. (in Chinese)FAN X Y, JIA Z X, BAI X L, et al. Classification of extremely soft rock tunnels using comprehensive evaluation model of entropy-weighted fuzzy[J]. Journal of Engineering Geology, 2019, 27(6): 1236-1243. (in Chinese) [24] 汤乾斌. 高速公路隧道运营安全性评价研究[J]. 北方交通,2015(8):101-104,108. (TANG Q B. Research on tunnel safety evaluation of expressway[J]. Northern Communications,2015(8):101-104,108. (in Chinese)TANG Q B. Research on tunnel safety evaluation of expressway[J]. Northern Communications, 2015(8): 101-104,108. (in Chinese) [25] 李建林, 吴金刚, 毕 强. 大跨度小净距公路隧道设计与施工方法研究[J]. 现代隧道技术,2019,56(5):157-162,227. (LI J L, WU J G, BI Q. Study on the design and construction method for the large-span highway tunnel with small interval[J]. Modern Tunnelling Technology,2019,56(5):157-162,227. (in Chinese)LI J L, WU J G, BI Q. Study on the design and construction method for the large-span highway tunnel with small interval[J]. Modern Tunnelling Technology, 2019, 56(5): 157-162,227. (in Chinese) [26] 周磊生, 孙会彬, 孔 军, 等. CD和CRD法施工下超大断面隧道围岩变形控制数值计算研究[J]. 公路交通技术,2018,34(S1):66-69,75. (ZHOU L S, SUN H B, KONG J, et al. Experimental research study on surrounding rock control mechanism of super large section tunnel under CD and CRD method[J]. Technology of Highway and Transport,2018,34(S1):66-69,75. (in Chinese)ZHOU L S, SUN H B, KONG J, et al. Experimental research study on surrounding rock control mechanism of super large section tunnel under CD and CRD method[J]. Technology of Highway and Transport, 2018, 34(S1): 66-69,75. (in Chinese) -