留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机场地基处理的施工振动传播及衰减特性分析

徐西永 王恩国 李晓楠 张金钢 吴树杭

徐西永, 王恩国, 李晓楠, 张金钢, 吴树杭. 机场地基处理的施工振动传播及衰减特性分析[J]. 岩土工程技术, 2025, 39(3): 403-408. doi: 10.20265/j.cnki.issn.1007-2993.2024-0095
引用本文: 徐西永, 王恩国, 李晓楠, 张金钢, 吴树杭. 机场地基处理的施工振动传播及衰减特性分析[J]. 岩土工程技术, 2025, 39(3): 403-408. doi: 10.20265/j.cnki.issn.1007-2993.2024-0095
Xu Xiyong, Wang Enguo, Li Xiaonan, Zhang Jingang, Wu Shuhang. Dissemination and attenuation characteristics of construction vibration in airport foundation treatment[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 403-408. doi: 10.20265/j.cnki.issn.1007-2993.2024-0095
Citation: Xu Xiyong, Wang Enguo, Li Xiaonan, Zhang Jingang, Wu Shuhang. Dissemination and attenuation characteristics of construction vibration in airport foundation treatment[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 403-408. doi: 10.20265/j.cnki.issn.1007-2993.2024-0095

机场地基处理的施工振动传播及衰减特性分析

doi: 10.20265/j.cnki.issn.1007-2993.2024-0095
基金项目: 山东省交通运输科技计划(2021B96,2021B97)
详细信息
    作者简介:

    徐西永,男,1990年生,硕士,高级工程师。研究方向为机场工程。E-mail:xuxiyong@jnairport.com

  • 中图分类号: U472

Dissemination and attenuation characteristics of construction vibration in airport foundation treatment

  • 摘要: 为探究地基处理施工对机场建筑物的影响,依托济南机场岩土工程专项研究项目,针对强夯和液压夯引起的振动问题开展试验研究,分析了2种地基处理方式的振动响应,提出了振动速度峰值与距夯点距离的数学模型,研究了施工振动对周边环境的影响规律。结果表明:2种地基处理方式的振动峰值持续时长在0.1 s左右,振动作用总时长约为1 s;振动速度衰减近似负指数函数关系,呈现出近夯点快,远离夯点慢的特点,且夯击能量越大,振动速度衰减越快;结合相应规范确定了振动安全允许距离。研究成果可为类似工程动力加固的安全性及地基处理设计提供参考。

     

  • 图  1  现场施工试验

    图  2  不同地基处理方式典型振动时域曲线

    图  3  不同地基处理方式振动峰值速度

    图  4  强夯振动峰值速度随距离衰减规律曲线

    图  5  液压夯振动峰值速度随距离衰减规律曲线

    表  1  强夯试验参数

    分区能级/kN·m 夯型 单击夯击能/kJ 夯点间距/m 夯点布置 夯击遍数
    1000点夯10004/4.5正方形2
    满夯1000D/4搭接搭接型1
    2000点夯20004正方形2
    满夯1000D/4搭接搭接型1
    3000点夯30004正方形2
    满夯1000D/4搭接搭接型1
    4000点夯40004/4.5正方形2
    满夯1000D/4搭接搭接型1
    下载: 导出CSV

    表  2  液压夯试验参数

    夯击能/kJ压点型式压点间距/m压点
    布置
    单点击数遍数
    70点压3.2正方形802
    110点压3.2正方形602
    150点压3.2正方形402
    下载: 导出CSV

    表  3  不同地基处理方式典型振动响应

    振动方向振动速度峰值/(cm·s−1振动频率/Hz峰值时刻/s
    强夯液压夯强夯液压夯强夯液压夯
    径向18.2277.39613.017.617.67629.4439
    切向2.7363.6657.415.517.72047.3127
    垂直向18.87812.30215.217.217.70597.3497
    下载: 导出CSV

    表  4  满足居住建筑基础处容许振动的测点距离

    施工方式夯击能达到抗震标准居住建筑未达到抗震标准居住建筑
    容许值/
    (mm·s−1)(1~10 Hz)
    满足指标
    测点峰值/(mm·s−1
    满足指标
    测点距离/m
    容许值
    /(mm·s−1)(1~10 Hz)
    满足指标
    测点峰值/(mm·s−1
    满足指标
    测点距离/m
    强夯1000 kN·m53.56503.50.6460
    2000 kN·m53.64403.51.6150
    3000 kN·m53.77503.52.2560
    4000 kN·m53.74603.52.23100
    液压夯70 kJ32.07402.12.0740
    110 kJ32.29402.11.7750
    150 kJ32.30402.11.7350
    下载: 导出CSV
  • [1] 李盼盼, 王家鼎, 谷天峰, 等. 强夯振动加速度的量测及现场试验研究[J]. 地震工程学报,2018,40(1):166-170. (LI P P, WANG J D, GU T F, et al. Measurement and field test research on vibration acceleration of dynamic compaction[J]. China Earthquake Engineering Journal,2018,40(1):166-170. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.166

    LI P P, WANG J D, GU T F, et al. Measurement and field test research on vibration acceleration of dynamic compaction[J]. China Earthquake Engineering Journal, 2018, 40(1): 166-170. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.166
    [2] 周 健, 张思峰, 贾敏才, 等. 强夯理论的研究现状及最新技术进展[J]. 地下空间与工程学报,2006,2(3):510-516. (ZHOU J, ZHANG S F, JIA M C, et al. Theoretic research situation and latest technical progress of dynamic consolidation method[J]. Chinese Journal of Underground Space and Engineering,2006,2(3):510-516. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.03.037

    ZHOU J, ZHANG S F, JIA M C, et al. Theoretic research situation and latest technical progress of dynamic consolidation method[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(3): 510-516. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.03.037
    [3] 张栋樑, 靳 静, 张 璐, 等. 高填方路堤强夯加固现场试验及数值模拟研究[J]. 公路交通科技(应用技术版), 2020, 16(8): 54-57. (ZHANG D L, JIN J, ZHANG L, et al. Field experiment and numerical simulation study on dynamic compaction reinforcement of high fill embankment[J]. Highway Transportation Technology (Applied Technology Edition), 2020, 16(8): 54-57. (in Chinese)

    ZHANG D L, JIN J, ZHANG L, et al. Field experiment and numerical simulation study on dynamic compaction reinforcement of high fill embankment[J]. Highway Transportation Technology (Applied Technology Edition), 2020, 16(8): 54-57. (in Chinese)
    [4] 司癸卯, 张燕飞, 张 成. 快速液压夯实机在地基处理中的应用分析[J]. 中国工程机械学报,2013,11(2):175-178. (SI G M, ZHANG Y F, ZHANG C. Applicable analysis on high-speed hydraulic compactors during foundation treatment[J]. Chinese Journal of Construction Machinery,2013,11(2):175-178. (in Chinese) doi: 10.3969/j.issn.1672-5581.2013.02.019

    SI G M, ZHANG Y F, ZHANG C. Applicable analysis on high-speed hydraulic compactors during foundation treatment[J]. Chinese Journal of Construction Machinery, 2013, 11(2): 175-178. (in Chinese) doi: 10.3969/j.issn.1672-5581.2013.02.019
    [5] 窦启文. 快速液压夯实技术在不良地基中的应用分析[J]. 建材技术与应用,2022(2):15-17. (DOU Q W. Application analysis of rapid hydraulic tamping technology in bad foundation[J]. Research & Application of Building Materials,2022(2):15-17. (in Chinese) doi: 10.3969/j.issn.1009-9441.2022.02.004

    DOU Q W. Application analysis of rapid hydraulic tamping technology in bad foundation[J]. Research & Application of Building Materials, 2022(2): 15-17. (in Chinese) doi: 10.3969/j.issn.1009-9441.2022.02.004
    [6] 蔡宗锟. 快速液压夯实地基处理技术的应用研究[D]. 济南: 山东大学, 2021. (CAI Z K. Application research of rapid hydraulic compaction foundation treatment technology[D]. Ji’nan: Shandong University, 2021. (in Chinese)

    CAI Z K. Application research of rapid hydraulic compaction foundation treatment technology[D]. Ji’nan: Shandong University, 2021. (in Chinese)
    [7] 赵国权, 孙文博, 陈少军, 等. 普通强夯与高速液压夯实工艺用于吹填砂层地基处理对比分析[J]. 水运工程,2021(2):155-159. (ZHAO G Q, SUN W B, CHEN S J, et al. Comparative analysis of common dynamic tamping and high-speed hydraulic tamping process used in foundation treatment of reclaimed sand layer[J]. Port & Waterway Engineering,2021(2):155-159. (in Chinese)

    ZHAO G Q, SUN W B, CHEN S J, et al. Comparative analysis of common dynamic tamping and high-speed hydraulic tamping process used in foundation treatment of reclaimed sand layer[J]. Port & Waterway Engineering, 2021(2): 155-159. (in Chinese)
    [8] 王俊林, 许 琨. 冲击荷载作用下地基土变形及动力特性[J]. 科学技术与工程,2020,20(6):2411-2416. (WANG J L, XU K. Deformation and dynamic characteristics of foundation soil under impact loads[J]. Science Technology and Engineering,2020,20(6):2411-2416. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.06.043

    WANG J L, XU K. Deformation and dynamic characteristics of foundation soil under impact loads[J]. Science Technology and Engineering, 2020, 20(6): 2411-2416. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.06.043
    [9] 郭 宏, 王 璇, 董彦莉, 等. 双减振沟强夯减振实验研究[J]. 中北大学学报(自然科学版),2018,39(5):515-520,528. (GUO H, WANG X, DONG Y L, et al. Experimental study on vibration reduction of double vibration reduction trench in dynamic compaction[J]. Journal of North University of China (Natural Science Edition),2018,39(5):515-520,528. (in Chinese)

    GUO H, WANG X, DONG Y L, et al. Experimental study on vibration reduction of double vibration reduction trench in dynamic compaction[J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 515-520,528. (in Chinese)
    [10] 贾敏才, 吴邵海, 叶建忠. 基于三维离散元法的强夯动力响应研究[J]. 湖南大学学报(自然科学版),2015,42(3):70-76. (JIA M C, WU S H, YE J Z. Discrete element modeling of dynamic compaction in granular soils using PFC3D[J]. Journal of Hunan University (Natural Sciences),2015,42(3):70-76. (in Chinese)

    JIA M C, WU S H, YE J Z. Discrete element modeling of dynamic compaction in granular soils using PFC3D[J]. Journal of Hunan University (Natural Sciences), 2015, 42(3): 70-76. (in Chinese)
    [11] 周 洋, 阿拉塔, 郭 迅, 等. 强夯振动衰减规律及其对建筑安全性的影响[J]. 震灾防御技术,2018,13(4):860-868. (ZHOU Y, A L T, GUO X, et al. Investigation on vibration attenuation laws with dynamic compaction vibration and the effect on building safety[J]. Technology for Earthquake Disaster Prevention,2018,13(4):860-868. (in Chinese) doi: 10.11899/zzfy20180413

    ZHOU Y, A L T, GUO X, et al. Investigation on vibration attenuation laws with dynamic compaction vibration and the effect on building safety[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 860-868. (in Chinese) doi: 10.11899/zzfy20180413
    [12] 时 伟, 邵琪琳, 董炳寅, 等. 深厚粉细砂场地8000 kN·m能级强夯振动衰减规律研究[J]. 西安建筑科技大学学报(自然科学版),2019,51(3):309-314. (SHI W, SHAO Q L, DONG B Y, et al. Research on vibration decay law of 8000 kN·m energy level dynamic compaction in deep silty sand site[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2019,51(3):309-314. (in Chinese)

    SHI W, SHAO Q L, DONG B Y, et al. Research on vibration decay law of 8000 kN·m energy level dynamic compaction in deep silty sand site[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2019, 51(3): 309-314. (in Chinese)
    [13] 闫东霄, 邓小龙. 路基强夯振动衰减规律及对临近构筑物影响分析[J]. 公路, 2022, 67(6): 70-74. (YAN D X, DENG X L. Analysis of the attenuation law of roadbed dynamic compaction vibration and its impact on adjacent structures[J]. Highway, 2022, 67(6): 70-74. (in Chinese)

    YAN D X, DENG X L. Analysis of the attenuation law of roadbed dynamic compaction vibration and its impact on adjacent structures[J]. Highway, 2022, 67(6): 70-74. (in Chinese)
    [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722−2014[S]. 北京: 中国标准出版社, 2015. (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722−2014[S]. Beijing: Standards Press of China, 2015. (in Chinese)

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722−2014[S]. Beijing: Standards Press of China, 2015. (in Chinese)
    [15] 方 磊, 经 绯, 刘松玉. 强夯振动影响与构筑物安全距离研究[J]. 东南大学学报(自然科学版),2001,31(3):29-32. (FANG L, JING F, LIU S Y. Influence of vibration caused by dynamic compaction and safe distances for buildings[J]. Journal of Southeast University (Natural Science Edition),2001,31(3):29-32. (in Chinese) doi: 10.3321/j.issn:1001-0505.2001.03.007

    FANG L, JING F, LIU S Y. Influence of vibration caused by dynamic compaction and safe distances for buildings[J]. Journal of Southeast University (Natural Science Edition), 2001, 31(3): 29-32. (in Chinese) doi: 10.3321/j.issn:1001-0505.2001.03.007
    [16] 中华人民共和国住房和城乡建设部. 建筑工程容许振动标准: GB 50868−2013[S]. 北京: 中国计划出版社, 2013. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for allowable vibration of building engineering: GB 50868−2013[S]. Beijing: China Planning Press, 2013. (in Chinese)

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for allowable vibration of building engineering: GB 50868−2013[S]. Beijing: China Planning Press, 2013. (in Chinese)
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-02
  • 修回日期:  2024-05-08
  • 录用日期:  2024-08-29
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回