Dissemination and attenuation characteristics of construction vibration in airport foundation treatment
-
摘要: 为探究地基处理施工对机场建筑物的影响,依托济南机场岩土工程专项研究项目,针对强夯和液压夯引起的振动问题开展试验研究,分析了2种地基处理方式的振动响应,提出了振动速度峰值与距夯点距离的数学模型,研究了施工振动对周边环境的影响规律。结果表明:2种地基处理方式的振动峰值持续时长在0.1 s左右,振动作用总时长约为1 s;振动速度衰减近似负指数函数关系,呈现出近夯点快,远离夯点慢的特点,且夯击能量越大,振动速度衰减越快;结合相应规范确定了振动安全允许距离。研究成果可为类似工程动力加固的安全性及地基处理设计提供参考。Abstract: To explore the impact of foundation treatment construction on airport buildings, relying on the Jinan Airport Geotechnical Engineering Project, experimental research was conducted on the vibration problems caused by dynamic compaction and hydraulic compaction. The vibration response of two foundation treatment methods was analyzed, and a mathematical model was proposed for the peak vibration velocity and the distance from the compaction point. The impact of construction vibration on the surrounding environment was studied. The results show that the peak duration of vibration for the two foundation treatment methods is about 0.1 seconds, and the total duration of vibration action is about 1 second; The attenuation of vibration velocity is approximately a negative exponential function relationship, showing the characteristics of being fast near the compaction point and slow away from the compaction point. Moreover, the greater the compaction energy, the faster the attenuation of vibration velocity. The allowable distance for vibration safety has been determined by relevant regulations, providing a reference for the safety and foundation treatment design of similar engineering dynamic reinforcement.
-
表 1 强夯试验参数
分区能级/kN·m 夯型 单击夯击能/kJ 夯点间距/m 夯点布置 夯击遍数 1000 点夯 1000 4/4.5 正方形 2 满夯 1000 D/4搭接 搭接型 1 2000 点夯 2000 4 正方形 2 满夯 1000 D/4搭接 搭接型 1 3000 点夯 3000 4 正方形 2 满夯 1000 D/4搭接 搭接型 1 4000 点夯 4000 4/4.5 正方形 2 满夯 1000 D/4搭接 搭接型 1 表 2 液压夯试验参数
夯击能/kJ 压点型式 压点间距/m 压点
布置单点击数 遍数 70 点压 3.2 正方形 80 2 110 点压 3.2 正方形 60 2 150 点压 3.2 正方形 40 2 表 3 不同地基处理方式典型振动响应
振动方向 振动速度峰值/(cm·s−1) 振动频率/Hz 峰值时刻/s 强夯 液压夯 强夯 液压夯 强夯 液压夯 径向 18.227 7.396 13.0 17.6 17.6762 9.4439 切向 2.736 3.665 7.4 15.5 17.7204 7.3127 垂直向 18.878 12.302 15.2 17.2 17.7059 7.3497 表 4 满足居住建筑基础处容许振动的测点距离
施工方式 夯击能 达到抗震标准居住建筑 未达到抗震标准居住建筑 容许值/
(mm·s−1)(1~10 Hz)满足指标
测点峰值/(mm·s−1)满足指标
测点距离/m容许值
/(mm·s−1)(1~10 Hz)满足指标
测点峰值/(mm·s−1)满足指标
测点距离/m强夯 1000 kN·m 5 3.56 50 3.5 0.64 60 2000 kN·m 5 3.64 40 3.5 1.61 50 3000 kN·m 5 3.77 50 3.5 2.25 60 4000 kN·m 5 3.74 60 3.5 2.23 100 液压夯 70 kJ 3 2.07 40 2.1 2.07 40 110 kJ 3 2.29 40 2.1 1.77 50 150 kJ 3 2.30 40 2.1 1.73 50 -
[1] 李盼盼, 王家鼎, 谷天峰, 等. 强夯振动加速度的量测及现场试验研究[J]. 地震工程学报,2018,40(1):166-170. (LI P P, WANG J D, GU T F, et al. Measurement and field test research on vibration acceleration of dynamic compaction[J]. China Earthquake Engineering Journal,2018,40(1):166-170. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.166LI P P, WANG J D, GU T F, et al. Measurement and field test research on vibration acceleration of dynamic compaction[J]. China Earthquake Engineering Journal, 2018, 40(1): 166-170. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.166 [2] 周 健, 张思峰, 贾敏才, 等. 强夯理论的研究现状及最新技术进展[J]. 地下空间与工程学报,2006,2(3):510-516. (ZHOU J, ZHANG S F, JIA M C, et al. Theoretic research situation and latest technical progress of dynamic consolidation method[J]. Chinese Journal of Underground Space and Engineering,2006,2(3):510-516. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.03.037ZHOU J, ZHANG S F, JIA M C, et al. Theoretic research situation and latest technical progress of dynamic consolidation method[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(3): 510-516. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.03.037 [3] 张栋樑, 靳 静, 张 璐, 等. 高填方路堤强夯加固现场试验及数值模拟研究[J]. 公路交通科技(应用技术版), 2020, 16(8): 54-57. (ZHANG D L, JIN J, ZHANG L, et al. Field experiment and numerical simulation study on dynamic compaction reinforcement of high fill embankment[J]. Highway Transportation Technology (Applied Technology Edition), 2020, 16(8): 54-57. (in Chinese)ZHANG D L, JIN J, ZHANG L, et al. Field experiment and numerical simulation study on dynamic compaction reinforcement of high fill embankment[J]. Highway Transportation Technology (Applied Technology Edition), 2020, 16(8): 54-57. (in Chinese) [4] 司癸卯, 张燕飞, 张 成. 快速液压夯实机在地基处理中的应用分析[J]. 中国工程机械学报,2013,11(2):175-178. (SI G M, ZHANG Y F, ZHANG C. Applicable analysis on high-speed hydraulic compactors during foundation treatment[J]. Chinese Journal of Construction Machinery,2013,11(2):175-178. (in Chinese) doi: 10.3969/j.issn.1672-5581.2013.02.019SI G M, ZHANG Y F, ZHANG C. Applicable analysis on high-speed hydraulic compactors during foundation treatment[J]. Chinese Journal of Construction Machinery, 2013, 11(2): 175-178. (in Chinese) doi: 10.3969/j.issn.1672-5581.2013.02.019 [5] 窦启文. 快速液压夯实技术在不良地基中的应用分析[J]. 建材技术与应用,2022(2):15-17. (DOU Q W. Application analysis of rapid hydraulic tamping technology in bad foundation[J]. Research & Application of Building Materials,2022(2):15-17. (in Chinese) doi: 10.3969/j.issn.1009-9441.2022.02.004DOU Q W. Application analysis of rapid hydraulic tamping technology in bad foundation[J]. Research & Application of Building Materials, 2022(2): 15-17. (in Chinese) doi: 10.3969/j.issn.1009-9441.2022.02.004 [6] 蔡宗锟. 快速液压夯实地基处理技术的应用研究[D]. 济南: 山东大学, 2021. (CAI Z K. Application research of rapid hydraulic compaction foundation treatment technology[D]. Ji’nan: Shandong University, 2021. (in Chinese)CAI Z K. Application research of rapid hydraulic compaction foundation treatment technology[D]. Ji’nan: Shandong University, 2021. (in Chinese) [7] 赵国权, 孙文博, 陈少军, 等. 普通强夯与高速液压夯实工艺用于吹填砂层地基处理对比分析[J]. 水运工程,2021(2):155-159. (ZHAO G Q, SUN W B, CHEN S J, et al. Comparative analysis of common dynamic tamping and high-speed hydraulic tamping process used in foundation treatment of reclaimed sand layer[J]. Port & Waterway Engineering,2021(2):155-159. (in Chinese)ZHAO G Q, SUN W B, CHEN S J, et al. Comparative analysis of common dynamic tamping and high-speed hydraulic tamping process used in foundation treatment of reclaimed sand layer[J]. Port & Waterway Engineering, 2021(2): 155-159. (in Chinese) [8] 王俊林, 许 琨. 冲击荷载作用下地基土变形及动力特性[J]. 科学技术与工程,2020,20(6):2411-2416. (WANG J L, XU K. Deformation and dynamic characteristics of foundation soil under impact loads[J]. Science Technology and Engineering,2020,20(6):2411-2416. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.06.043WANG J L, XU K. Deformation and dynamic characteristics of foundation soil under impact loads[J]. Science Technology and Engineering, 2020, 20(6): 2411-2416. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.06.043 [9] 郭 宏, 王 璇, 董彦莉, 等. 双减振沟强夯减振实验研究[J]. 中北大学学报(自然科学版),2018,39(5):515-520,528. (GUO H, WANG X, DONG Y L, et al. Experimental study on vibration reduction of double vibration reduction trench in dynamic compaction[J]. Journal of North University of China (Natural Science Edition),2018,39(5):515-520,528. (in Chinese)GUO H, WANG X, DONG Y L, et al. Experimental study on vibration reduction of double vibration reduction trench in dynamic compaction[J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 515-520,528. (in Chinese) [10] 贾敏才, 吴邵海, 叶建忠. 基于三维离散元法的强夯动力响应研究[J]. 湖南大学学报(自然科学版),2015,42(3):70-76. (JIA M C, WU S H, YE J Z. Discrete element modeling of dynamic compaction in granular soils using PFC3D[J]. Journal of Hunan University (Natural Sciences),2015,42(3):70-76. (in Chinese)JIA M C, WU S H, YE J Z. Discrete element modeling of dynamic compaction in granular soils using PFC3D[J]. Journal of Hunan University (Natural Sciences), 2015, 42(3): 70-76. (in Chinese) [11] 周 洋, 阿拉塔, 郭 迅, 等. 强夯振动衰减规律及其对建筑安全性的影响[J]. 震灾防御技术,2018,13(4):860-868. (ZHOU Y, A L T, GUO X, et al. Investigation on vibration attenuation laws with dynamic compaction vibration and the effect on building safety[J]. Technology for Earthquake Disaster Prevention,2018,13(4):860-868. (in Chinese) doi: 10.11899/zzfy20180413ZHOU Y, A L T, GUO X, et al. Investigation on vibration attenuation laws with dynamic compaction vibration and the effect on building safety[J]. Technology for Earthquake Disaster Prevention, 2018, 13(4): 860-868. (in Chinese) doi: 10.11899/zzfy20180413 [12] 时 伟, 邵琪琳, 董炳寅, 等. 深厚粉细砂场地8000 kN·m能级强夯振动衰减规律研究[J]. 西安建筑科技大学学报(自然科学版),2019,51(3):309-314. (SHI W, SHAO Q L, DONG B Y, et al. Research on vibration decay law of 8000 kN·m energy level dynamic compaction in deep silty sand site[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2019,51(3):309-314. (in Chinese)SHI W, SHAO Q L, DONG B Y, et al. Research on vibration decay law of 8000 kN·m energy level dynamic compaction in deep silty sand site[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2019, 51(3): 309-314. (in Chinese) [13] 闫东霄, 邓小龙. 路基强夯振动衰减规律及对临近构筑物影响分析[J]. 公路, 2022, 67(6): 70-74. (YAN D X, DENG X L. Analysis of the attenuation law of roadbed dynamic compaction vibration and its impact on adjacent structures[J]. Highway, 2022, 67(6): 70-74. (in Chinese)YAN D X, DENG X L. Analysis of the attenuation law of roadbed dynamic compaction vibration and its impact on adjacent structures[J]. Highway, 2022, 67(6): 70-74. (in Chinese) [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722−2014[S]. 北京: 中国标准出版社, 2015. (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722−2014[S]. Beijing: Standards Press of China, 2015. (in Chinese)General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722−2014[S]. Beijing: Standards Press of China, 2015. (in Chinese) [15] 方 磊, 经 绯, 刘松玉. 强夯振动影响与构筑物安全距离研究[J]. 东南大学学报(自然科学版),2001,31(3):29-32. (FANG L, JING F, LIU S Y. Influence of vibration caused by dynamic compaction and safe distances for buildings[J]. Journal of Southeast University (Natural Science Edition),2001,31(3):29-32. (in Chinese) doi: 10.3321/j.issn:1001-0505.2001.03.007FANG L, JING F, LIU S Y. Influence of vibration caused by dynamic compaction and safe distances for buildings[J]. Journal of Southeast University (Natural Science Edition), 2001, 31(3): 29-32. (in Chinese) doi: 10.3321/j.issn:1001-0505.2001.03.007 [16] 中华人民共和国住房和城乡建设部. 建筑工程容许振动标准: GB 50868−2013[S]. 北京: 中国计划出版社, 2013. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for allowable vibration of building engineering: GB 50868−2013[S]. Beijing: China Planning Press, 2013. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for allowable vibration of building engineering: GB 50868−2013[S]. Beijing: China Planning Press, 2013. (in Chinese) -