留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳化原理的遗址土养护方法研究

岳建伟 张东桦 仇玉莹 杨雪 窦东方

岳建伟, 张东桦, 仇玉莹, 杨雪, 窦东方. 基于碳化原理的遗址土养护方法研究[J]. 岩土工程技术, 2025, 39(3): 437-445. doi: 10.20265/j.cnki.issn.1007-2993.2024-0125
引用本文: 岳建伟, 张东桦, 仇玉莹, 杨雪, 窦东方. 基于碳化原理的遗址土养护方法研究[J]. 岩土工程技术, 2025, 39(3): 437-445. doi: 10.20265/j.cnki.issn.1007-2993.2024-0125
Yue Jianwei, Zhang Donghua, Qiu Yuying, Yang Xue, Dou Dongfang. Conservation method of relics soil based on carbonization principle[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 437-445. doi: 10.20265/j.cnki.issn.1007-2993.2024-0125
Citation: Yue Jianwei, Zhang Donghua, Qiu Yuying, Yang Xue, Dou Dongfang. Conservation method of relics soil based on carbonization principle[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 437-445. doi: 10.20265/j.cnki.issn.1007-2993.2024-0125

基于碳化原理的遗址土养护方法研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0125
基金项目: 国家自然科学基金项目(51978634);河南大学学科培育项目(2019YLZDCG05);河南省科技攻关项目(212102310287;212102310271)
详细信息
    作者简介:

    岳建伟,男,1972年生,博士,教授,主要从事微生物岩土工程与土遗址保护研究。E-mail:yjwchn@126.com

  • 中图分类号: TU41

Conservation method of relics soil based on carbonization principle

  • 摘要: 土遗址修复后表层易开裂脱落,且与旧遗址相比外观质量欠佳。依托开封城墙遗址修复工程,针对新修复土遗址常见病害,结合机械施工要求,对仿遗址土添加2%浓度甲基硅酸钠(防水剂)后,基于石灰碳化原理,对不同石灰掺量、CO2浓度和养护时间的仿遗址土试样进行力学与水理性能对比试验。试验研究结果表明:(1)添加石灰和甲基硅酸钠以后土样的水稳定性与崩解性能均更加理想,CO2浓度为5%条件下甲基硅酸钠与石灰基本完成了碳化,养护24 h可达到较好的毛细吸水性能,养护72 h时可达到较好的耐崩解性能;(2)增加石灰掺量、CO2浓度和养护时间,可使试样碳化后产生的CaCO3增多,从而提高其抗剪强度和抗压强度,且CO2浓度的贡献大于养护时间;(3)当空气中CO2浓度为15%时,养护时间超过72 h后试样抗压强度增长缓慢趋于稳定,即石灰与空气中充足的CO2发生充分反应(约72 h)之后,试样抗压强度接近最佳。研究成果可为土遗址保护提供新思路。

     

  • 图  1  碳化反应原理

    图  2  毛细吸水时间和质量吸水率关系曲线图

    图  3  各配合比试样崩解24 h后外观变化

    图  4  崩解时间和质量吸水率关系曲线图

    图  5  不同法向应力下各配合比试样的抗剪强度与养护时间关系

    图  6  仿遗址土抗剪强度指标与养护时间关系曲线

    图  7  仿遗址土抗压强度与养护时间关系

    图  8  pH值和无侧限抗压强度的关系曲线

    表  1  掺和配比设计

    配合比组合石灰/%甲基硅酸钠浓度/%
    A1152
    A230
    下载: 导出CSV

    表  2  养护设计

    CO2浓度/% 养护时间/h
    6 12 24 48 72 120
    5 B1C1 B1C2 B1C3 B1C4 B1C5 B1C6
    10 B2C1 B2C2 B2C3 B2C4 B2C5 B2C6
    15 B3C1 B3C2 B3C3 B3C4 B3C5 B3C6
    下载: 导出CSV
  • [1] 陈 毅, 张虎元, 杨 龙. 遗址土劣化进程中微观结构变化的类比研究[J]. 岩土力学,2018,39(11):4117-4124,4141. (CHEN Y, ZHANG H Y, YANG L. Analogy study on evolution of microstructure of earthen monument during natural weathering process[J]. Rock and Soil Mechanics,2018,39(11):4117-4124,4141. (in Chinese)

    CHEN Y, ZHANG H Y, YANG L. Analogy study on evolution of microstructure of earthen monument during natural weathering process[J]. Rock and Soil Mechanics, 2018, 39(11): 4117-4124,4141. (in Chinese)
    [2] 刘 莉, 姜大伟, 于明波, 等. 千枚岩全风化土的持水特性研究[J]. 河南科技大学学报(自然科学版),2022,43(6):53-58. (LIU L, JIANG D W, YU M B, et al. Soil water retention characteristics of Phyllite completely weathered soil[J]. Journal of Henan University of Science and Technology (Natural Science),2022,43(6):53-58. (in Chinese)

    LIU L, JIANG D W, YU M B, et al. Soil water retention characteristics of Phyllite completely weathered soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2022, 43(6): 53-58. (in Chinese)
    [3] 岳建伟, 李嘉乐, 王思远, 等. 定远营遗址稳定性和微观劣化的研究[J]. 科学技术与工程,2021,21(10):4159-4166. (YUE J W, LI J L, WANG S Y, et al. The stability and micro deterioration of Dingyuanying ruins[J]. Science Technology and Engineering,2021,21(10):4159-4166. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.10.043

    YUE J W, LI J L, WANG S Y, et al. The stability and micro deterioration of Dingyuanying ruins[J]. Science Technology and Engineering, 2021, 21(10): 4159-4166. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.10.043
    [4] 任克彬, 王 博, 李新明, 等. 低应力水平下土遗址力学特性的干湿循环效应[J]. 岩石力学与工程学报,2019,38(2):376-385. (REN K B, WANG B, LI X M, et al. Effect of dry-wet cycles on the mechanical properties of earthen archaeological site under low stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):376-385. (in Chinese)

    REN K B, WANG B, LI X M, et al. Effect of dry-wet cycles on the mechanical properties of earthen archaeological site under low stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 376-385. (in Chinese)
    [5] 袁志辉, 唐 春, 杨普济, 等. 干湿循环下原状黄土抗压强度试验研究[J]. 工程地质学报,2018,26(S1):155-161. (YUAN Z H, TANG C, YANG P J, et al. Experimental studies of compressive strength of undisturbed loess in drying-wetting cycle[J]. Journal of Engineering Geology,2018,26(S1):155-161. (in Chinese)

    YUAN Z H, TANG C, YANG P J, et al. Experimental studies of compressive strength of undisturbed loess in drying-wetting cycle[J]. Journal of Engineering Geology, 2018, 26(S1): 155-161. (in Chinese)
    [6] 张冬梅. 浅析建筑材料石灰的性能及应用[J]. 四川水泥, 2021(7): 105-106. (ZHANG D M. Analysis of the performance and application of building material lime[J]. Sichuan Cement, 2021(7): 105-106. (in Chinese)

    ZHANG D M. Analysis of the performance and application of building material lime[J]. Sichuan Cement, 2021(7): 105-106. (in Chinese)
    [7] 岳建伟, 杨 雪, 赵丽敏, 等. 开封城墙修复土配合比试验[J]. 建筑材料学报,2022,25(5):532-536,544. (YUE J W, YANG X, ZHAO L M, et al. Experimental on mix proportion of restoration soil for Kaifeng city wall[J]. Journal of Building Materials,2022,25(5):532-536,544. (in Chinese) doi: 10.3969/j.issn.1007-9629.2022.05.013

    YUE J W, YANG X, ZHAO L M, et al. Experimental on mix proportion of restoration soil for Kaifeng city wall[J]. Journal of Building Materials, 2022, 25(5): 532-536,544. (in Chinese) doi: 10.3969/j.issn.1007-9629.2022.05.013
    [8] 郑 旭. 碳化固化土的耐久性能试验研究[D]. 南京: 东南大学, 2015. (ZHENG X. Experimental study on the durability of carbonated soils[D]. Nanjing: Southeast University, 2015. (in Chinese)

    ZHENG X. Experimental study on the durability of carbonated soils[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [9] 秦 川. 软弱地基整体碳化固化工艺试验研究[D]. 南京: 东南大学, 2019. (QIN C. Experimental study on overall carbonization and solidification process of soft foundation[D]. Nanjing: Southeast University, 2019. (in Chinese)

    QIN C. Experimental study on overall carbonization and solidification process of soft foundation[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [10] WANG D X, XIAO J, GAO X Y. Strength gain and microstructure of carbonated reactive MgO-fly ash solidified sludge from East Lake, China[J]. Engineering Geology,2019,251:37-47. doi: 10.1016/j.enggeo.2019.02.012
    [11] LI W T, NI P P, YI Y L. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils[J]. Science of the Total Environment,2019,671:741-753.
    [12] LIU S Y, CAI G H, WANG L, et al. Treatment system and method for ex-situ carbonization and solidification of silt soil using active magnesium oxide: US20200115875A1[P]. 2020-04-16.
    [13] SILVA B A, PINTO A P F, GOMES A, et al. Effects of natural and accelerated carbonation on the properties of lime-based materials[J]. Journal of CO2 Utilization,2021,49:101552. doi: 10.1016/j.jcou.2021.101552
    [14] LUO S R, WU W D, WU K Y. Effect of recycled coarse aggregates enhanced by CO2 on the mechanical properties of recycled aggregate concrete[J]. IOP Conference Series: Materials Science and Engineering,2018,431(10):102006.
    [15] ERGENÇ D, FORT R. Accelerating carbonation in lime-based mortar in high CO2 environments[J]. Construction and Building Materials,2018,188:314-325.
    [16] 岳建伟, 林 健, 王永锋, 等. 开封仿遗址土水理性质的改良研究[J]. 工程科学与技术,2020,52(1):46-55. (YUE J W, LIN J, WANG Y F, et al. Study on the improvement of soil water in Kaifeng imitation site[J]. Advanced Engineering Sciences,2020,52(1):46-55. (in Chinese)

    YUE J W, LIN J, WANG Y F, et al. Study on the improvement of soil water in Kaifeng imitation site[J]. Advanced Engineering Sciences, 2020, 52(1): 46-55. (in Chinese)
    [17] BOARDMAN D I, GLENDINNING S, ROGERS C D F. Development of stabilisation and solidification in lime-clay mixes[J]. Géotechnique,2001,51(6):533-543.
    [18] 张 铖, 王 玲, 姚 燕, 等. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报,2022,36(7):168-171. (ZHANG C, WANG L, YAO Y, et al. Determination of concrete carbonation depth by testing the pH value of layer-by-layer grinding concrete samples[J]. Materials Reports,2022,36(7):168-171. (in Chinese)

    ZHANG C, WANG L, YAO Y, et al. Determination of concrete carbonation depth by testing the pH value of layer-by-layer grinding concrete samples[J]. Materials Reports, 2022, 36(7): 168-171. (in Chinese)
    [19] 徐树强, 王乐乐, 马清林, 等. 天然水硬性石灰在不同碳化条件下的水化反应[J]. 文物保护与考古科学,2017,29(4):1-8. (XU S Q, WANG L L, MA Q L, et al. Hydration of natural hydraulic lime pastes under different conditions of carbonation[J]. Sciences of Conservation and Archaeology,2017,29(4):1-8. (in Chinese)

    XU S Q, WANG L L, MA Q L, et al. Hydration of natural hydraulic lime pastes under different conditions of carbonation[J]. Sciences of Conservation and Archaeology, 2017, 29(4): 1-8. (in Chinese)
    [20] 蔡 奕, 施 斌, 刘志彬, 等. 团聚体大小对填筑土强度影响的试验研究[J]. 岩土工程学报,2005,27(12):1482-1486. (CAI Y, SHI B, LIU Z B, et al. Experimental study on effect of aggregate size on strength of filled soils[J]. Chinese Journal of Geotechnical Engineering,2005,27(12):1482-1486. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.12.022

    CAI Y, SHI B, LIU Z B, et al. Experimental study on effect of aggregate size on strength of filled soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1482-1486. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.12.022
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 修回日期:  2024-05-23
  • 录用日期:  2024-08-29
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回