Microstructure and permeability anisotropy of soft clay during one-dimensional compression
-
摘要: 为研究软黏土微观结构定向演化规律及其与渗透系数各向异性的相关性,选取天津滨海新区软土作为研究对象,通过渗透试验研究软土渗透系数的各向异性,利用扫描电镜SEM(Scanning Electron Microscopy)和IPP(Image-Pro Plus)显微图像处理技术,对固结前后软土微观结构的定向性进行了定性与定量分析。研究结果表明:天津软土原状样孔隙存在一定的定向性,但不明显,孔隙的定向性随着固结压力的增大而增大;渗透系数的各向异性率随着固结压力的增大呈线性增大趋势,增大趋势在200 kPa之后减缓。由此可见,软土渗透系数的各向异性与其微观结构的各向异性有一定的相关性,但是当固结压力增大时,相关性有所减弱。Abstract: To study the directional evolution law of soft clay microstructure and its correlation with the anisotropy of permeability coefficient, soft soil samples from the Binhai New Area in Tianjin were selected as the research object. The permeability coefficient anisotropy of Tianjin soft soil was studied through permeability tests, and the directionality of the microstructure of Tianjin soft soil before and after consolidation was qualitatively and quantitatively analyzed using scanning electron microscopy (SEM) and Image-Pro Plus (IPP) microscopy image processing technology. The research results show that there is a certain degree of directionality in the pores of the original Tianjin soft soil, but it is not obvious. The directionality of the pores increases with the increase of consolidation pressure; the anisotropy rate is linear with the increase of consolidation pressure. The increasing trend slows down after 200 kPa. Therefore, the permeability anisotropy has a certain correlation with the microstructural anisotropy, but when the consolidation pressure increases, the correlation weakens.
-
Key words:
- soft clay /
- permeability coefficient /
- microstructure /
- anisotropy
-
表 1 天津软土物相组成及含量
% 物相组成 石英 伊利石 长石 方解石 白云石 高岭石 Al2O3 埃洛石 蛭石 亚氯酸盐 蒙脱石 含量 30.39 28.04 12.06 11.22 6.12 5.79 0.13 0 0.26 3.81 2.18 表 2 各向异性率与固结压力关系表
固结压力/kPa 各项异性率/% 固结压力/kPa 各项异性率/% 0 41.16 100 60.99 25 46.56 200 76.95 50 51.97 400 80.00 表 3 垂直、水平渗透系数以及渗透系数各向异性值
固结压力
/kPa垂直渗透
系数kv/(cm·s−1)水平渗透
系数kh/(cm·s−1)渗透系数
各向异性值50 4.19×10−7 5.85×10−7 1.39 100 2.26×10−7 4.47×10−7 1.98 200 1.81×10−7 3.70×10−7 2.04 400 1.07×10−7 3.10×10−7 2.90 -
[1] 施 斌, 姜洪涛. 粘性土的微观结构分析技术研究[J]. 岩石力学与工程学报,2001,20(6):864-870. (SHI B, JIANG H T. Research on the analysis techniques for clayey soil microstructure[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(6):864-870. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.025SHI B, JIANG H T. Research on the analysis techniques for clayey soil microstructure[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 864-870. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.025 [2] 张季如, 祝 杰, 黄 丽, 等. 土壤微观结构定量分析的IPP图像技术研究[J]. 武汉理工大学学报,2008,30(4):80-83. (ZHANG J R, ZHU J, HUANG L, et al. IPP image technique used for quantitative analysis of soil microstructure[J]. Journal of Wuhan University of Technology,2008,30(4):80-83. (in Chinese)ZHANG J R, ZHU J, HUANG L, et al. IPP image technique used for quantitative analysis of soil microstructure[J]. Journal of Wuhan University of Technology, 2008, 30(4): 80-83. (in Chinese) [3] 王宝军. 基于标准差椭圆法SEM图像颗粒定向研究原理与方法[J]. 岩土工程学报,2009,31(7):1082-1087. (WANG B J. Theories and methods for soil grain orientation distribution in SEM by standard deviational ellipse[J]. Chinese Journal of Geotechnical Engineering,2009,31(7):1082-1087. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.07.015WANG B J. Theories and methods for soil grain orientation distribution in SEM by standard deviational ellipse[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1082-1087. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.07.015 [4] 房后国, 刘娉慧, 袁志刚. 海积软土固结过程中微观结构变化特征分析[J]. 水文地质工程地质,2007(2):49-52,56. (FANG H G, LIU P H, YUAN Z G. Analysis on characteristics of microstructure change during marine soft soil consolidation[J]. Hydrogeology & Engineering Geology,2007(2):49-52,56. (in Chinese) doi: 10.3969/j.issn.1000-3665.2007.02.012FANG H G, LIU P H, YUAN Z G. Analysis on characteristics of microstructure change during marine soft soil consolidation[J]. Hydrogeology & Engineering Geology, 2007(2): 49-52,56. (in Chinese) doi: 10.3969/j.issn.1000-3665.2007.02.012 [5] 张中琼, 王 清, 张 泽, 等. 吹填土固结过程中结构与物理性质变化[J]. 天津大学学报(自然科学与工程技术版),2014,47(6):504-511. (ZHANG Z Q, WANG Q, ZHANG Z, et al. Changes of structure and physical properties in the process of dredger fill consolidation[J]. Journal of Tianjin University (Science and Technology),2014,47(6):504-511. (in Chinese)ZHANG Z Q, WANG Q, ZHANG Z, et al. Changes of structure and physical properties in the process of dredger fill consolidation[J]. Journal of Tianjin University (Science and Technology), 2014, 47(6): 504-511. (in Chinese) [6] 苑晓青, 王 清, 孙 铁, 等. 分级真空预压法加固吹填土过程中孔隙分布特征[J]. 吉林大学学报(地球科学版),2012,42(1):169-176. (YUAN X Q, WANG Q, SUN T, et al. Pore distribution characteristics of dredger fill during hierarchical vacuum preloading[J]. Journal of Jilin University (Earth Science Edition),2012,42(1):169-176. (in Chinese)YUAN X Q, WANG Q, SUN T, et al. Pore distribution characteristics of dredger fill during hierarchical vacuum preloading[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 169-176. (in Chinese) [7] HATTAB M, HAMMAD T, FLEUREAU J M, et al. Behaviour of a sensitive marine sediment: microstructural investigation[J]. Géotechnique,2013,63(1):71-84. [8] 张季如, 祝 杰, 黄 丽, 等. 固结条件下软黏土微观孔隙结构的演化及其分形描述[J]. 水利学报,2008,39(4):394-400. (ZHANG J R, ZHU J, HUANG L, et al. Evolution of micro pore structure of soft clay and its fractal features under consolidation[J]. Journal of Hydraulic Engineering,2008,39(4):394-400. (in Chinese) doi: 10.3321/j.issn:0559-9350.2008.04.002ZHANG J R, ZHU J, HUANG L, et al. Evolution of micro pore structure of soft clay and its fractal features under consolidation[J]. Journal of Hydraulic Engineering, 2008, 39(4): 394-400. (in Chinese) doi: 10.3321/j.issn:0559-9350.2008.04.002 [9] 孔令荣. 不同固结压力软黏土的孔隙分布与渗透系数研究[J]. 地下空间与工程学报,2011,7(S2):1664-1666,1682. (KONG L R. Study on pore distribution and permeability under different vertical stress levels due to consolidation of soft clay[J]. Chinese Journal of Underground Space and Engineering,2011,7(S2):1664-1666,1682. (in Chinese) doi: 10.3969/j.issn.1673-0836.2011.z2.022KONG L R. Study on pore distribution and permeability under different vertical stress levels due to consolidation of soft clay[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2): 1664-1666,1682. (in Chinese) doi: 10.3969/j.issn.1673-0836.2011.z2.022 [10] JIA R, LEI H Y, LI K. Compressibility and microstructure evolution of different reconstituted clays during 1D compression[J]. International Journal of Geomechanics,2020,20(10):04020181. [11] 饶天宽. 不同压实度黏性土微观孔隙特性与渗透性关系研究[D]. 武汉: 湖北工业大学, 2015: 2-4. (RAO T K. Different clayey soil compaction degree study on the relationship between the microscopic pore characteristics and permeability[D]. Wuhan: Hubei University of Technology, 2015: 2-4. (in Chinese)RAO T K. Different clayey soil compaction degree study on the relationship between the microscopic pore characteristics and permeability[D]. Wuhan: Hubei University of Technology, 2015: 2-4. (in Chinese) [12] 加 瑞, 雷华阳. 有明黏土各向异性固结特性的试验研究[J]. 岩土力学,2019,40(6):2231-2238. (JIA R, LEI H Y. Experimental study of anisotropic consolidation behavior of Ariake clay[J]. Rock and Soil Mechanics,2019,40(6):2231-2238. (in Chinese)JIA R, LEI H Y. Experimental study of anisotropic consolidation behavior of Ariake clay[J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238. (in Chinese) [13] 卢瑞娜. 山西汾河中游灵敏性粉土的性质及成因研究[D]. 太原: 太原理工大学, 2021: 53-56. (LU R N. Study on properties and genesis of sensitive silt in middle reaches of Fenhe River in Shanxi Province[D]. Taiyuan: Taiyuan University of Technology, 2021: 53-56. (in Chinese)LU R N. Study on properties and genesis of sensitive silt in middle reaches of Fenhe River in Shanxi Province[D]. Taiyuan: Taiyuan University of Technology, 2021: 53-56. (in Chinese) -