留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂软土地基高填方临时堆场地基变形特性分析

王文辉

王文辉. 复杂软土地基高填方临时堆场地基变形特性分析[J]. 岩土工程技术, 2025, 39(4): 543-549. doi: 10.20265/j.cnki.issn.1007-2993.2024-0192
引用本文: 王文辉. 复杂软土地基高填方临时堆场地基变形特性分析[J]. 岩土工程技术, 2025, 39(4): 543-549. doi: 10.20265/j.cnki.issn.1007-2993.2024-0192
Wang Wenhui. Deformation characteristics of high-fill temporary storage yard foundation on complex soft soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(4): 543-549. doi: 10.20265/j.cnki.issn.1007-2993.2024-0192
Citation: Wang Wenhui. Deformation characteristics of high-fill temporary storage yard foundation on complex soft soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(4): 543-549. doi: 10.20265/j.cnki.issn.1007-2993.2024-0192

复杂软土地基高填方临时堆场地基变形特性分析

doi: 10.20265/j.cnki.issn.1007-2993.2024-0192
详细信息
    作者简介:

    王文辉,男,1968年生,大学本科,教授级高级工程师,注册土木工程师(岩土),主要从事岩土工程相关领域研究。E-mail:wwh7797610@163.com

  • 中图分类号: TU433

Deformation characteristics of high-fill temporary storage yard foundation on complex soft soil

  • 摘要: 依托某滨海复杂软土地基大型高填方临时堆场工程,通过开展软土地基孔隙水压力与变形的原位监测及有限元分析,研究了增设排水板工况下软土地基在高填方荷载作用下的固结和变形特性。结果表明:高填方过程中,场地整体稳定性及变形均满足设计控制要求;大面积高填方堆载作用下,地基土竖向变形与侧向变形主要集中在地表以下6.0 m深度范围内;排水板对超孔隙水压力的消散作用明显,可有效降低地基侧向土压力及变形量,从而减小对周边环境的扰动效应;与理论计算模型预测结果相比,实测的地基土变形影响仅在一定深度范围内较为明显。研究成果可为类似工程提供参考。

     

  • 图  1  堆场地理位置图

    图  2  堆场平面图、剖面图及传感器布置图

    图  3  堆场堆填期水位变化

    图  4  堆填期地基土中孔隙水压力变化规律

    图  5  堆填期地基土不同深度位置累积沉降变化规律

    图  6  堆场地基侧向变形沿深度的变化规律

    图  7  堆场地基边桩累积变形

    图  8  堆场南侧和西侧道路累积沉降

    图  9  堆场南侧和西侧临近建筑物的累积沉降

    图  10  二维有限元模拟地基变形结果

    表  1  场地各土层物理力学指标

    土层天然重度
    γ/(kN·m−3)
    孔隙比
    e
    黏聚力
    c/kPa
    内摩擦角
    φ/(°)
    压缩模量ES0.1-0.2/MPa承载力特征值fak/kPa
    杂填土①17.08.010.02.560
    淤泥②15.71.6726.83.82.445
    砂质黏土③18.50.80815.526.35.6200
    砂土状强风化凝灰岩④21.030.030.040.0450
    碎块状强风化凝灰岩⑤23.032.035.0600
    中等风化凝灰岩⑥24.0100.040.02500
    下载: 导出CSV
  • [1] 吕延栋, 朱龙祥, 王 旭, 等. 电渗–堆载–化学灌浆联合处理淤泥质软土的试验研究[J]. 岩土工程学报,2021,43(S2):100-103. (LÜ Y D, ZHU L X, WANG X, et al. Experimental investigation on electro-osmosis-surcharge preloading-chemical grouting for silty soft soils[J]. Chinese Journal of Geotechnical Engineering,2021,43(S2):100-103. (in Chinese)

    LÜ Y D, ZHU L X, WANG X, et al. Experimental investigation on electro-osmosis-surcharge preloading-chemical grouting for silty soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 100-103. (in Chinese)
    [2] 薛 元, 崔维秀, 封志军, 等. 滇池地区铁路软土地基加固处理技术[J]. 铁道工程学报,2015,32(8):35-40. (XUE Y, CUI W X, FENG Z J, et al. The reinforcement technology of railway's soft soil foundation in Dian Lake area[J]. Journal of Railway Engineering Society,2015,32(8):35-40. (in Chinese)

    XUE Y, CUI W X, FENG Z J, et al. The reinforcement technology of railway's soft soil foundation in Dian Lake area[J]. Journal of Railway Engineering Society, 2015, 32(8): 35-40. (in Chinese)
    [3] 王国辉, 陈文化, 聂庆科, 等. 深厚淤泥质土中基坑开挖对基桩影响的离心模型试验研究[J]. 岩土力学,2020,41(2):399-407. (WANG G H, CHEN W H, NIE Q K, et al. Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests[J]. Rock and Soil Mechanics,2020,41(2):399-407. (in Chinese)

    WANG G H, CHEN W H, NIE Q K, et al. Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests[J]. Rock and Soil Mechanics, 2020, 41(2): 399-407. (in Chinese)
    [4] 唐钱龙, 李双龙, 魏丽敏, 等. 软土区堆载对桥梁桩基偏位影响及纠偏措施[J]. 土木与环境工程学报(中英文),2024,46(6):126-134. (TANG Q L, LI S L, WEI L M, et al. Influence of surcharge loads in soft soils on bridge pile foundation deviations and its correction measures[J]. Journal of Civil and Environmental Engineering,2024,46(6):126-134. (in Chinese)

    TANG Q L, LI S L, WEI L M, et al. Influence of surcharge loads in soft soils on bridge pile foundation deviations and its correction measures[J]. Journal of Civil and Environmental Engineering, 2024, 46(6): 126-134. (in Chinese)
    [5] 陕 耀, 肖蔚雄, 马伟叁, 等. 软土地区钢套管钻孔灌注桩施工对临近高铁路基变形影响研究[J]. 铁道科学与工程学报,2023,20(7):2372-2384. (SHAN Y, XIAO W X, MA W S, et al. Influence of developed Benoto piling on deformation of adjacent high-speed railway subgrade in soft soil area[J]. Journal of Railway Science and Engineering,2023,20(7):2372-2384. (in Chinese)

    SHAN Y, XIAO W X, MA W S, et al. Influence of developed Benoto piling on deformation of adjacent high-speed railway subgrade in soft soil area[J]. Journal of Railway Science and Engineering, 2023, 20(7): 2372-2384. (in Chinese)
    [6] 贾敏才, 刘 波, 周训军. 滨海含软土夹层粉细砂地基高能级强夯加固试验研究[J]. 建筑结构学报,2019,40(11):240-246. (JIA M C, LIU B, ZHOU X J. Field test study of high energy dynamic compaction on marine silty fine sand deposits with soft interlayers[J]. Journal of Building Structures,2019,40(11):240-246. (in Chinese)

    JIA M C, LIU B, ZHOU X J. Field test study of high energy dynamic compaction on marine silty fine sand deposits with soft interlayers[J]. Journal of Building Structures, 2019, 40(11): 240-246. (in Chinese)
    [7] 李 威, 周春儿, 吴加武, 等. 重载堆场桩网复合地基离心模型试验与数值模拟研究[J]. 岩土工程学报,2022,44(S2):71-75. (LI W, ZHOU C E, WU J W, et al. Centrifugal model tests and numerical simulations of pile-net composite foundation for heavy-load storage yard[J]. Chinese Journal of Geotechnical Engineering,2022,44(S2):71-75. (in Chinese)

    LI W, ZHOU C E, WU J W, et al. Centrifugal model tests and numerical simulations of pile-net composite foundation for heavy-load storage yard[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 71-75. (in Chinese)
    [8] 夏梦然. 深基坑基底注浆加固效果数值模拟分析[J]. 土木与环境工程学报(中英文),2020,42(1):64-69. (XIA M R. Numerical simulation analysis of jet grouting effect of deep excavation bottom[J]. Journal of Civil and Environmental Engineering,2020,42(1):64-69. (in Chinese)

    XIA M R. Numerical simulation analysis of jet grouting effect of deep excavation bottom[J]. Journal of Civil and Environmental Engineering, 2020, 42(1): 64-69. (in Chinese)
    [9] ZHANG R J, QIAO Y Q, ZHENG J J, et al. A method for considering curing temperature effect in mix proportion design of mass cement-solidified mud at high water content[J]. Acta Geotechnica,2021,16(1):279-301. doi: 10.1007/s11440-020-00961-5
    [10] WANG D X, WANG H W, LARSSON S, et al. Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite[J]. Construction and Building Materials,2020,241:118085. doi: 10.1016/j.conbuildmat.2020.118085
    [11] 石明生, 李禄禄, 夏洋洋, 等. 高聚物布袋桩加固淤泥质软土地基模型试验[J]. 铁道科学与工程学报,2020,17(9):2235-2242. (SHI M S, LI L L, XIA Y Y, et al. Model test of reinforcing silty soft soil with polymer bag grouting pile[J]. Journal of Railway Science and Engineering,2020,17(9):2235-2242. (in Chinese)

    SHI M S, LI L L, XIA Y Y, et al. Model test of reinforcing silty soft soil with polymer bag grouting pile[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2235-2242. (in Chinese)
    [12] 张 恒, 黄俊光, 毕俊伟. 增压式真空预压固结淤泥质软土的试验研究[J]. 长江科学院院报,2024,41(5):149-154. (ZHANG H, HUANG J G, BI J W. Experimental study on consolidation characteristics of mucky clay treated with air-booster vacuum preloading[J]. Journal of Changjiang River Scientific Research Institute,2024,41(5):149-154. (in Chinese)

    ZHANG H, HUANG J G, BI J W. Experimental study on consolidation characteristics of mucky clay treated with air-booster vacuum preloading[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(5): 149-154. (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-07-28
  • 录用日期:  2024-10-29
  • 刊出日期:  2025-08-08

目录

    /

    返回文章
    返回