Load variation characteristics of cutterhead load during shield disc cutter cutting a reinforced concrete diaphragm wall
-
摘要: 以苏州轨道交通8号线时代广场站盾构穿越钢筋混凝土地下连续墙工程为依托,通过数值模拟和理论分析研究滚刀切削钢筋混凝土地连墙刀具及刀盘荷载,并基于实际工程系统研究盾构推力与扭矩的变化特征。研究表明:滚刀对钢筋混凝土的破碎形式是跳跃式的,切削力曲线可分为四个阶段;盾构刀盘在切削地连墙后推力扭矩主要受推进速度的影响,并与钢筋混凝土接触面积成正比,在切墙过程中,推进速度波动较大的情况下推力扭矩会出现较大起伏;通过编制刀盘荷载计算程序,获得刀盘推力与扭矩理论值及变化规律:推力和扭矩理论值的变化趋势与切削钢筋混凝土地连墙滚刀数量变化一致。Abstract: Based on the shield tunneling through the reinforced concrete diaphragm wall at the Times Square Station of Suzhou Rail Transit Line 8, numerical simulation and theoretical analysis were carried out to investigate the cutter and cutterhead load of the disc cutter cutting the reinforced concrete diaphragm wall and the characteristics of the shield thrust and torque based on the actual engineering systems. The study revealed that the crushing form of the disc cutter on the reinforced concrete is a jumping type, and the cutting force curve can be divided into four stages. The thrust and torque of the shield cutter mainly depend on the driving speed after cutting the reinforced concrete diaphragm wall, and are proportional to the contact area with the reinforced concrete. During the cutting process, the thrust and torque will fluctuate greatly when the driving speed fluctuates significantly. By developing a cutter load calculation program, the theoretical values and variation patterns of the cutter thrust and torque were obtained, which are consistent with the change in the number of rolling cutters cutting the reinforced concrete diaphragm wall.
-
Key words:
- shield tunnel /
- disc cutter /
- steel reinforced concrete /
- diaphragm wall /
- cutter load
-
表 1 地连墙形式及构造
围护结构 结构形式 接头形式 混凝土强度等级 钢筋布置情况 地连墙 复合墙 锁口管 C30 底板以下4 m:外侧ϕ25@150 mm,内侧ϕ25@150 mm+ϕ28@150 mm;
底板以下4~10 m:外侧ϕ25@150 mm,内侧ϕ28@150 mm表 2 C30混凝土RHT模型主要参数
符号 名称 参数取值 符号 名称 参数取值 RO 物质密度 2.3 g/cm3 D1 初始损伤参数 0.04 SHERA 剪切模量 16.7 GPa D2 损伤参数 1 $ T_1$ 状态方程参数 35.27 GPa A1 雨贡纽系数 35.27 GPa A 残余应力强度参数 1.6 A2 雨贡纽系数 39.58 GPa N 残余应力强度指数 0.61 A3 雨贡纽系数 9.04 GPa FC 单轴抗压强度 0.03 GPa PEL 压缩应变率指数 0.032 $ T_{2} $ 状态方程参数 0 GPa PCO 孔隙压实时压力 6 表 3 钢筋MAT_PLASTIC_KINEMATIC模型参数
$ \sigma_{0} $/MPa $ E $/GPa $ E_{t} $/GPa C/s-1 P 272.26 201 3.18 3299 4.815 表 4 滚刀模型参数
符号 名称 参数取值 RO 物质密度 8×10−6 kg/mm3 E 杨氏模量 210 GPa PR 泊松比 0.25 表 5 滚刀布置参数
i li/mm $ \alpha_{i} $/(°) i li/mm $ \alpha_{i} $/(°) 1 70 0 17 1600 0 2 160 180 18 1700 180 3 250 0 19 1800 90 4 340 180 20 1900 270 5 430 90 21 2000 0 6 520 270 22 2100 180 7 610 90 23 2200 90 8 700 270 24 2300 270 9 800 0 25 2400 0 10 900 180 26 2500 225 11 1000 90 27 2600 180 12 1100 270 28 2700 315 13 1200 0 29 2800 90 14 1300 180 30 2900 45 15 1400 90 31 3000 135 16 1500 270 32 3100 0 -
[1] 李宏波. 盾构直接切削φ25 mm主筋钢筋混凝土桩基可行性研究[J]. 隧道建设(中英文), 2020, 40(12): 1808-1816. (LI H B. Feasibility study on direct cutting of reinforced concrete pile foundation with φ25 mm main reinforced bar by shield[J]. Tunnel Construction, 2020, 40(12): 1808-1816. (in Chinese)LI H B. Feasibility study on direct cutting of reinforced concrete pile foundation with φ25 mm main reinforced bar by shield[J]. Tunnel Construction, 2020, 40(12): 1808-1816. (in Chinese) [2] WU G J, JIA S P, CHEN W Z, et al. Modelling analysis of the influence of shield crossing on deformation and force in a large diaphragm wall[J]. Tunnelling and Underground Space Technology, 2018, 72: 154-161. doi: 10.1016/j.tust.2017.11.028 [3] TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57-73. [4] ROSTAMI J. Design optimization, performance prediction and economic analysis of tunnel boring machines for the construction of the proposed yucca mountain nuclear waste repository[D]. Golden: Colorado School of Mines, 1992. [5] 许 宇, 李兴高, 杨 益, 等. 盾构切刀切削混凝土过程中的动态响应试验[J]. 哈尔滨工业大学学报, 2021, 53(5): 182-189. (XU Y, LI X G, YANG Y, et al. Dynamic response mechanism of shield cutter in concrete cutting[J]. Journal of Harbin Institute of Technology, 2021, 53(5): 182-189. (in Chinese) doi: 10.11918/201905250XU Y, LI X G, YANG Y, et al. Dynamic response mechanism of shield cutter in concrete cutting[J]. Journal of Harbin Institute of Technology, 2021, 53(5): 182-189. (in Chinese) doi: 10.11918/201905250 [6] 许华国, 陈 馈, 孙振川. 盾构刀盘切削钢筋混凝土桩基室内试验研究[J]. 隧道建设(中英文), 2020, 40(1): 35-42. (XU H G, CHEN K, SUN Z H. Laboratory test of reinforced concrete pile foundation cutting by shield cutterhead[J]. Tunnel Construction, 2020, 40(1): 35-42. (in Chinese)XU H G, CHEN K, SUN Z H. Laboratory test of reinforced concrete pile foundation cutting by shield cutterhead[J]. Tunnel Construction, 2020, 40(1): 35-42. (in Chinese) [7] HUANG R, HU J, PAN J B, et al. The Π-formed diaphragm wall construction for departure and reception of shield machine[J]. Sustainability, 2022, 14(13): 7653. doi: 10.3390/su14137653 [8] YU H, CHEN L, PENG K X. Adaptability of a reinforced concrete diaphragm wall cut by disc cutter[J]. Sustainability, 2022, 14(23): 16154. doi: 10.3390/su142316154 [9] KRAUSE H. Geologische erfahrungen beim einsatz von tunnelvortriebsmaschinen in baden-württemberg[C]//Proceedings of the Vorträge Des 24 on Neue Erkenntnisse im Hohlraumbau — Fundierungen im Fels / Latest Findings in the Construction of Underground Excavations-Rock Foundations. Vienna: Springer, 1976: 49-60. [10] 卢 浩, 王明洋, 夏沅谱, 等. 土压平衡盾构刀盘扭矩计算模型[J]. 浙江大学学报(工学版), 2014, 48(9): 1640-1645. (LU H, WANG M Y, XIA Y P, et al. Calculation model of cutterhead torque for earth pressure balance shield[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(9): 1640-1645. (in Chinese)LU H, WANG M Y, XIA Y P, et al. Calculation model of cutterhead torque for earth pressure balance shield[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(9): 1640-1645. (in Chinese) [11] 赵海雷, 孙振川, 张 兵, 等. 基于CSM改进模型的TBM刀盘关键参数相关性研究[J]. 隧道建设(中英文), 2020, 40(S1): 169-178. (ZHAO H L, SUN Z C, ZHANG B, et al. Research on correlation of key parameters of TBM cutter head based on improved CSM model[J]. Tunnel Construction, 2020, 40(S1): 169-178. (in Chinese)ZHAO H L, SUN Z C, ZHANG B, et al. Research on correlation of key parameters of TBM cutter head based on improved CSM model[J]. Tunnel Construction, 2020, 40(S1): 169-178. (in Chinese) [12] 杨振兴, 曾垂刚, 张 凯, 等. 软硬不均地层对盾构刀盘受力计算方法与分析[J]. 科学技术与工程, 2022, 22(25): 11163-11169. (YANG Z X, ZENG C G, ZHANG K, et al. Calculation method and engineering application of force on shield cutter disk for soft and hard composite stratum[J]. Science Technology and Engineering, 2022, 22(25): 11163-11169. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.25.043YANG Z X, ZENG C G, ZHANG K, et al. Calculation method and engineering application of force on shield cutter disk for soft and hard composite stratum[J]. Science Technology and Engineering, 2022, 22(25): 11163-11169. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.25.043 [13] 吴起星, 安关峰, 周小文, 等. 软硬复合地层中盾构掘进刀盘受力分析与计算[J]. 土木工程学报, 2015, 48(S2): 321-326. (WU Q X, AN G F, ZHOU X W, et al. Cutterhead mechanics analysis of shield tunneling in soft and hard complex stratum[J]. China Civil Engineering Journal, 2015, 48(S2): 321-326. (in Chinese)WU Q X, AN G F, ZHOU X W, et al. Cutterhead mechanics analysis of shield tunneling in soft and hard complex stratum[J]. China Civil Engineering Journal, 2015, 48(S2): 321-326. (in Chinese) [14] 杜 欣, 黄雪梅, 郝 岩, 等. 盾构切削混凝土桥桩刀盘荷载分析[J]. 地下空间与工程学报, 2021, 17(6): 1742-1750. (DU X, HUANG X M, HAO Y, et al. Analysis on cutterhead load in shield cutting concrete bridge pile[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1742-1750. (in Chinese) doi: 10.3969/j.issn.1673-0836.2021.6.dxkj202106007DU X, HUANG X M, HAO Y, et al. Analysis on cutterhead load in shield cutting concrete bridge pile[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1742-1750. (in Chinese) doi: 10.3969/j.issn.1673-0836.2021.6.dxkj202106007 -
下载: