Stratification of marine soil profile based on borehole tests
-
摘要: 海洋土在形成过程中受复杂地质作用影响存在显著的不均匀性,这种不均匀性会影响海洋岩土结构物的安全性和正常运行,准确地识别土层并探明土体性质对于海洋岩土结构物设计至关重要。基于随机场理论开展考虑不确定性的海洋土土体剖面分层,通过考虑土层间的空间相关性,估计各个土体单元所属各土体类别的概率,最终通过蒙特卡洛抽样实现二维剖面土体分层。此外,分析了深度因子和钻探数量对分层结果不确定性的影响,结果表明:本研究方法可基于有限的工程钻探数据,实现海洋土二维剖面分层,并定量表征了土体分层结果的不确定性,减少钻探数量会增加分层的不确定性。Abstract: Marine soils have significant non-uniformity due to complex geological factors during the formation process, which can impact the safety and serviceability of marine geotechnical structures. Accurately identifying soil layers and determining soil properties are crucial for assessing foundation bearing capacity, predicting deformations, and designing marine geotechnical structures. A soil profile stratification method considering uncertainty was developed based on random field theory. By incorporating spatial correlations between soil layers, the probabilities of each soil element belonging to specific soil categories were estimated and two-dimensional soil stratification was achieved through Monte Carlo sampling. The influence of depth factors and the number of boreholes on the uncertainty of stratification results was analyzed. The results demonstrated that this approach can achieve two-dimensional soil stratification within the coverage range of limited borehole data. Reduction in the number of boreholes could increase the uncertainty of stratification results.
-
Key words:
- marine soil /
- borehole /
- random field /
- soil stratification /
- uncertainty
-
表 1 部分土体基本物理性质参数
钻孔水平位置/m 试样深度/m 土粒比重 液限/% 塑限/% 8 7.10~7.30 2.7 28.8 19.3 8 18.70~18.90 2.7 31.6 22.1 8 30.30~30.50 2.7 31.9 22.7 79 6.00~6.20 2.7 26.4 17.7 143 10.20~10.40 2.7 27.2 18.2 143 21.20~-21.40 2.7 26.4 17.3 222 9.35~9.55 2.7 24.5 15.8 222 22.15~22.35 2.7 26.7 17.5 222 34.15~34.35 2.69 25.8 17.8 表 2 土体竖直影响范围IV(m)
深度因子ZD 竖直影响范围IV(m) /m 稍密粉砂 稍密粉土 中密粉土 密实粉土 粉土夹粉砂 1 0.1 0.15 0.225 0.175 0.1 2 0.2 0.3 0.45 0.35 0.2 3 0.3 0.45 0.675 0.525 0.3 4 0.4 0.6 0.9 0.7 0.4 5 0.5 0.75 1.125 0.875 0.5 6 0.6 0.9 1.35 1.05 0.6 7 0.7 1.05 1.575 1.225 0.7 8 0.8 1.2 1.8 1.4 0.8 9 0.9 1.35 2.025 1.575 0.9 10 1 1.5 2.25 1.75 1 -
[1] 汪明元, 王宽君, 周力沛, 等. 基于CPTU的地质参数分析及其在海上风电场的应用[J]. 南方能源建设,2018,5(2):37-46. (WANG M Y, WANG K J, ZHOU L P, et al. Analysis of geological parameters based on CPTU and its application in offshore wind farm[J]. Southern Energy Construction,2018,5(2):37-46. (in Chinese)WANG M Y, WANG K J, ZHOU L P, et al. Analysis of geological parameters based on CPTU and its application in offshore wind farm[J]. Southern Energy Construction, 2018, 5(2): 37-46. (in Chinese) [2] 林 军, 蔡国军, 邹海峰, 等. 基于随机场理论的江苏海相黏土空间变异性评价研究[J]. 岩土工程学报,2015,37(7):1278-1287. (LIN J, CAI G J, ZOU H F, et al. Assessment of spatial variability of Jiangsu marine clay based on random field theory[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1278-1287. (in Chinese) doi: 10.11779/CJGE201507014LIN J, CAI G J, ZOU H F, et al. Assessment of spatial variability of Jiangsu marine clay based on random field theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1278-1287. (in Chinese) doi: 10.11779/CJGE201507014 [3] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021–2001[S]. 北京: 中国建筑工业出版社, 2004. (Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021–2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021–2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese) [4] 李广信. 我国的岩土工程规范标准纵横谈[J]. 工程勘察,2004(1):11-15. (LI G X. Discussions on Chinese codes and standards for geotechnical engineering[J]. Geotechnical Investigation & Surveying,2004(1):11-15. (in Chinese)LI G X. Discussions on Chinese codes and standards for geotechnical engineering[J]. Geotechnical Investigation & Surveying, 2004(1): 11-15. (in Chinese) [5] LI J H, CAI Y M, LI X Y, et al. Simulating realistic geological stratigraphy using direction-dependent coupled Markov chain model[J]. Computers and Geotechnics,2019,115:103147. doi: 10.1016/j.compgeo.2019.103147 [6] LI J, CASSIDY M J, HUANG J, et al. Probabilistic identification of soil stratification[J]. Géotechnique,2016,66(1):16-26. [7] WALVOORT D J J, DE GRUIJTER J J. Compositional kriging: a spatial interpolation method for compositional data[J]. Mathematical Geology,2001,33(8):951-966. doi: 10.1023/A:1012250107121 [8] HENGL T, HEUVELINK G B M, STEIN A. Comparison of kriging with external drift and regression-kriging[R]. 2003. [9] NOBRE M M, SYKES J F. Application of Bayesian kriging to subsurface characterization[J]. Canadian Geotechnical Journal,1992,29(4):589-598. doi: 10.1139/t92-066 [10] 陶袁钦, 孙宏磊, 蔡袁强. 考虑约束的贝叶斯概率反演方法[J]. 岩土工程学报,2021,43(10):1878-1886. (TAO Y Q, SUN H L, CAI Y Q. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering,2021,43(10):1878-1886. (in Chinese) doi: 10.11779/CJGE202110014TAO Y Q, SUN H L, CAI Y Q. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. (in Chinese) doi: 10.11779/CJGE202110014 [11] CAO Z J, WANG Y. Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(2):267-276. doi: 10.1061/(ASCE)GT.1943-5606.0000765 [12] 陶袁钦. 基于贝叶斯理论的岩土参数概率反分析与变形预测方法[D]. 杭州: 浙江大学, 2022. (TAO Y Q. Probabilistic inverse analysis of geotechnical parameters and deformation prediction based on Bayesian theory[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)TAO Y Q. Probabilistic inverse analysis of geotechnical parameters and deformation prediction based on Bayesian theory[D]. Hangzhou: Zhejiang University, 2022. (in Chinese) [13] VANMARCKE E. Random fields: analysis and synthesis[M]. Cambridge: MIT Press, 1983. [14] 郑 栋. 土性参数概率模型的贝叶斯表征方法和边坡可靠度分析[D]. 武汉: 武汉大学, 2018. (ZHENG D. Bayesian characterization of probabilistic models of soil parameters and slope reliability analysis[D]. Wuhan: Wuhan University, 2018. (in Chinese)ZHENG D. Bayesian characterization of probabilistic models of soil parameters and slope reliability analysis[D]. Wuhan: Wuhan University, 2018. (in Chinese) [15] GONG W P, ZHAO C, JUANG C H, et al. Stratigraphic uncertainty modelling with random field approach[J]. Computers and Geotechnics,2020,125:103681. doi: 10.1016/j.compgeo.2020.103681 [16] YAN W, SHEN P, ZHOU W H, et al. A rigorous random field-based framework for 3D stratigraphic uncertainty modelling[J]. Engineering Geology,2023,323:107235. doi: 10.1016/j.enggeo.2023.107235 -