留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钻探试验的海洋土土体剖面分层

吴刚 冯治国 余颂 戚雯璐 陈松庭

吴刚, 冯治国, 余颂, 戚雯璐, 陈松庭. 基于钻探试验的海洋土土体剖面分层[J]. 岩土工程技术, 2025, 39(3): 361-366. doi: 10.20265/j.cnki.issn.1007-2993.2024-0196
引用本文: 吴刚, 冯治国, 余颂, 戚雯璐, 陈松庭. 基于钻探试验的海洋土土体剖面分层[J]. 岩土工程技术, 2025, 39(3): 361-366. doi: 10.20265/j.cnki.issn.1007-2993.2024-0196
Wu Gang, Feng Zhiguo, Yu Song, Qi Wenlu, Chen Songting. Stratification of marine soil profile based on borehole tests[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 361-366. doi: 10.20265/j.cnki.issn.1007-2993.2024-0196
Citation: Wu Gang, Feng Zhiguo, Yu Song, Qi Wenlu, Chen Songting. Stratification of marine soil profile based on borehole tests[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 361-366. doi: 10.20265/j.cnki.issn.1007-2993.2024-0196

基于钻探试验的海洋土土体剖面分层

doi: 10.20265/j.cnki.issn.1007-2993.2024-0196
详细信息
    作者简介:

    吴 刚,男,1981年生,硕士,高级工程师。研究方向为岩土工程。E-mail:48040791@qq.com

    通讯作者:

    陈松庭,男,1999年生,在读博士研究生。研究方向为岩土工程。E-mail:chenst2021@zjut.edu.cn

  • 中图分类号: TU42

Stratification of marine soil profile based on borehole tests

  • 摘要: 海洋土在形成过程中受复杂地质作用影响存在显著的不均匀性,这种不均匀性会影响海洋岩土结构物的安全性和正常运行,准确地识别土层并探明土体性质对于海洋岩土结构物设计至关重要。基于随机场理论开展考虑不确定性的海洋土土体剖面分层,通过考虑土层间的空间相关性,估计各个土体单元所属各土体类别的概率,最终通过蒙特卡洛抽样实现二维剖面土体分层。此外,分析了深度因子和钻探数量对分层结果不确定性的影响,结果表明:本研究方法可基于有限的工程钻探数据,实现海洋土二维剖面分层,并定量表征了土体分层结果的不确定性,减少钻探数量会增加分层的不确定性。

     

  • 图  1  网格划分及参数示意图

    图  2  钻探分层结果

    图  3  不同深度因子下的平均信息熵

    图  4  剖面土体分层结果

    图  5  海洋土剖面的分层不确定性

    图  6  传统插值法土体分层结果

    图  7  三组钻探分层结果

    图  8  基于三组钻探数据的剖面分层结果

    图  9  基于三组钻探数据的分层不确定性

    表  1  部分土体基本物理性质参数

    钻孔水平位置/m试样深度/m土粒比重液限/%塑限/%
    87.10~7.302.728.819.3
    818.70~18.902.731.622.1
    830.30~30.502.731.922.7
    796.00~6.202.726.417.7
    14310.20~10.402.727.218.2
    14321.20~-21.402.726.417.3
    2229.35~9.552.724.515.8
    22222.15~22.352.726.717.5
    22234.15~34.352.6925.817.8
    下载: 导出CSV

    表  2  土体竖直影响范围IV(m)

    深度因子ZD竖直影响范围IV(m) /m
    稍密粉砂稍密粉土中密粉土密实粉土粉土夹粉砂
    10.10.150.2250.1750.1
    20.20.30.450.350.2
    30.30.450.6750.5250.3
    40.40.60.90.70.4
    50.50.751.1250.8750.5
    60.60.91.351.050.6
    70.71.051.5751.2250.7
    80.81.21.81.40.8
    90.91.352.0251.5750.9
    1011.52.251.751
    下载: 导出CSV
  • [1] 汪明元, 王宽君, 周力沛, 等. 基于CPTU的地质参数分析及其在海上风电场的应用[J]. 南方能源建设,2018,5(2):37-46. (WANG M Y, WANG K J, ZHOU L P, et al. Analysis of geological parameters based on CPTU and its application in offshore wind farm[J]. Southern Energy Construction,2018,5(2):37-46. (in Chinese)

    WANG M Y, WANG K J, ZHOU L P, et al. Analysis of geological parameters based on CPTU and its application in offshore wind farm[J]. Southern Energy Construction, 2018, 5(2): 37-46. (in Chinese)
    [2] 林 军, 蔡国军, 邹海峰, 等. 基于随机场理论的江苏海相黏土空间变异性评价研究[J]. 岩土工程学报,2015,37(7):1278-1287. (LIN J, CAI G J, ZOU H F, et al. Assessment of spatial variability of Jiangsu marine clay based on random field theory[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1278-1287. (in Chinese) doi: 10.11779/CJGE201507014

    LIN J, CAI G J, ZOU H F, et al. Assessment of spatial variability of Jiangsu marine clay based on random field theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1278-1287. (in Chinese) doi: 10.11779/CJGE201507014
    [3] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021–2001[S]. 北京: 中国建筑工业出版社, 2004. (Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021–2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)

    Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021–2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
    [4] 李广信. 我国的岩土工程规范标准纵横谈[J]. 工程勘察,2004(1):11-15. (LI G X. Discussions on Chinese codes and standards for geotechnical engineering[J]. Geotechnical Investigation & Surveying,2004(1):11-15. (in Chinese)

    LI G X. Discussions on Chinese codes and standards for geotechnical engineering[J]. Geotechnical Investigation & Surveying, 2004(1): 11-15. (in Chinese)
    [5] LI J H, CAI Y M, LI X Y, et al. Simulating realistic geological stratigraphy using direction-dependent coupled Markov chain model[J]. Computers and Geotechnics,2019,115:103147. doi: 10.1016/j.compgeo.2019.103147
    [6] LI J, CASSIDY M J, HUANG J, et al. Probabilistic identification of soil stratification[J]. Géotechnique,2016,66(1):16-26.
    [7] WALVOORT D J J, DE GRUIJTER J J. Compositional kriging: a spatial interpolation method for compositional data[J]. Mathematical Geology,2001,33(8):951-966. doi: 10.1023/A:1012250107121
    [8] HENGL T, HEUVELINK G B M, STEIN A. Comparison of kriging with external drift and regression-kriging[R]. 2003.
    [9] NOBRE M M, SYKES J F. Application of Bayesian kriging to subsurface characterization[J]. Canadian Geotechnical Journal,1992,29(4):589-598. doi: 10.1139/t92-066
    [10] 陶袁钦, 孙宏磊, 蔡袁强. 考虑约束的贝叶斯概率反演方法[J]. 岩土工程学报,2021,43(10):1878-1886. (TAO Y Q, SUN H L, CAI Y Q. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering,2021,43(10):1878-1886. (in Chinese) doi: 10.11779/CJGE202110014

    TAO Y Q, SUN H L, CAI Y Q. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. (in Chinese) doi: 10.11779/CJGE202110014
    [11] CAO Z J, WANG Y. Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(2):267-276. doi: 10.1061/(ASCE)GT.1943-5606.0000765
    [12] 陶袁钦. 基于贝叶斯理论的岩土参数概率反分析与变形预测方法[D]. 杭州: 浙江大学, 2022. (TAO Y Q. Probabilistic inverse analysis of geotechnical parameters and deformation prediction based on Bayesian theory[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)

    TAO Y Q. Probabilistic inverse analysis of geotechnical parameters and deformation prediction based on Bayesian theory[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
    [13] VANMARCKE E. Random fields: analysis and synthesis[M]. Cambridge: MIT Press, 1983.
    [14] 郑 栋. 土性参数概率模型的贝叶斯表征方法和边坡可靠度分析[D]. 武汉: 武汉大学, 2018. (ZHENG D. Bayesian characterization of probabilistic models of soil parameters and slope reliability analysis[D]. Wuhan: Wuhan University, 2018. (in Chinese)

    ZHENG D. Bayesian characterization of probabilistic models of soil parameters and slope reliability analysis[D]. Wuhan: Wuhan University, 2018. (in Chinese)
    [15] GONG W P, ZHAO C, JUANG C H, et al. Stratigraphic uncertainty modelling with random field approach[J]. Computers and Geotechnics,2020,125:103681. doi: 10.1016/j.compgeo.2020.103681
    [16] YAN W, SHEN P, ZHOU W H, et al. A rigorous random field-based framework for 3D stratigraphic uncertainty modelling[J]. Engineering Geology,2023,323:107235. doi: 10.1016/j.enggeo.2023.107235
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-07-19
  • 录用日期:  2024-08-29
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回