Calculation method for the effect of pile head action on foundation piles of irregularly arranged tower cranes
-
摘要: 实际工程建设中塔吊基础有时会与主体基础结合,采用永临结合设计,此种情形下会出现多桩径不对称布置且荷载偏心的异形承台桩基础。针对此类桩基础,提出一种适用的桩顶作用效应的理论计算公式,应用ABAQUS对实际工程算例进行有限元仿真计算,验证所提理论公式的准确性和普适性。结果表明:现有规范中群桩基础桩顶作用效应的计算方法为本文所提出的计算方法的特殊形式,而本文所提出的公式具有更大的适用范围;对于规则布置的群桩基础桩顶效应,采用规范方法计算的平均误差为18.38%,采用本文提出的方法计算的平均误差为5.88%;通过误差分析,提出使用本文方法进行计算时,应根据工程重要程度和受力方向等综合确定一个安全系数,安全系数建议值为1.1~1.2,此区间具有较高的安全性和经济性,可避免不必要的设计浪费。Abstract: In engineering construction, tower crane foundations are sometimes combined with the main foundation, using a permanent temporary combination design. There may be asymmetrically arranged pile foundations with multiple pile diameters and eccentric loads in this situation. Focusing on this type of pile foundation, a theoretical calculation formula for the pile top effect was proposed. ABAQUS was applied to conduct finite element simulation calculations on actual engineering examples to verify the accuracy and universality of the proposed theoretical formula. The results indicate that the calculation method for pile top effect of group pile foundations in existing codes is a special case of the method proposed in this paper, and the proposed method has a broader application scope. The average error of directly applying the code’s method for calculating the pile head effects of regularly arranged group pile foundations is 18.38%, whereas the average error of the method proposed in this paper is 5.88%. Through error analysis, it is recommended that a safety factor, determined based on the importance of the project and the direction of forces among other factors, should be applied when using the proposed method for engineering calculations. A suggested value range of 1.1 to 1.2 is proposed, offering a balance between safety and economy, and avoiding unnecessary design waste.
-
Key words:
- tower crane /
- asymmetrical pile distribution /
- change pile diameter /
- pile head action /
- ABAQUS
-
表 1 算例8#塔吊基础的基本计算参数
Zi Iy/mm4 Ix/mm4 Ixy/mm4 xi/mm yi/mm Z1 1.79×1013 1.26×1013 −2.15×1011 −1982.6 −2428.7 Z2 1.79×1013 1.26×1013 −2.15×1011 −1982.6 1571.3 Z3 1.79×1013 1.26×1013 −2.15×1011 −142.0 3499.4 Z4 1.79×1013 1.26×1013 −2.15×1011 2017.4 1571.3 Z5 1.79×1013 1.26×1013 −2.15×1011 2017.4 −2428.7 表 2 三种计算方法的误差
桩 本文值 规范值 FEM值 误差/% F1/kN F2/kN F3/kN Δ1-2 Δ1-3 Δ2-3 F1max 8305.8 7138.4 8583.8 16.4 −3.3 −20.2 F1min −3233.2 −2584.1 −3056.4 25.1 5.5 −18.3 F2max 6742.8 6613.3 7164.7 2.0 −6.3 −8.3 F2min −1670.2 −2106.7 −1533.6 −20.7 8.2 27.2 F3max 4728.6 6212.6 5037.5 −23.9 −6.5 18.9 F3min −2243.0 −1653.8 −2030.0 35.6 9.5 −22.7 F4max 6901.5 6728.8 7534.2 2.6 −9.2 −12.0 F4min −1828.9 −2126.7 −1737.8 −14.0 5.0 18.3 F5max 8184.8 7199.4 8431.2 13.7 −3.0 −17.1 F5min −3112.2 −2639.8 −3186.0 17.9 −2.4 −20.7 误差绝对值的平均值 17.18 5.88 18.38 -
[1] 刘金砺. 高层建筑地基基础概念设计的思考[J]. 土木工程学报,2006,39(6):100-105. (LIU J L. Review and optimization of the conceptual design of foundations for high-rise buildings[J]. China Civil Engineering Journal,2006,39(6):100-105. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.06.018LIU J L. Review and optimization of the conceptual design of foundations for high-rise buildings[J]. China Civil Engineering Journal, 2006, 39(6): 100-105. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.06.018 [2] 王 涛, 高文生, 刘金砺. 桩基变刚度调平设计的实施方法研究[J]. 岩土工程学报,2010,32(4):531-537. (WANG T, GAO W S, LIU J L. Study on implemention method for optimization design of pile foundation stiffness to reduce differential settlement[J]. Chinese Journal of Geotechnical Engineering,2010,32(4):531-537. (in Chinese)WANG T, GAO W S, LIU J L. Study on implemention method for optimization design of pile foundation stiffness to reduce differential settlement[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 531-537. (in Chinese) [3] 赵宝利. 苏州地区某超高层建筑基础优化设计[J]. 建筑结构,2011,41(2):97-100. (ZHAO B L. Optimization design on the foundation of a super high-rise building in Suzhou[J]. Building Structure,2011,41(2):97-100. (in Chinese)ZHAO B L. Optimization design on the foundation of a super high-rise building in Suzhou[J]. Building Structure, 2011, 41(2): 97-100. (in Chinese) [4] 王 茂, 高 飞, 谈世兵, 等. 地下室底板布设塔吊基础永临结合施工技术[J]. 中国港湾建设,2019,39(12):56-59,78. (WANG M, GAO F, TAN S B, et al. Construction technology for combining temporary tower crane foundation with permanent basement floor[J]. China Harbour Engineering,2019,39(12):56-59,78. (in Chinese) doi: 10.7640/zggwjs201912012WANG M, GAO F, TAN S B, et al. Construction technology for combining temporary tower crane foundation with permanent basement floor[J]. China Harbour Engineering, 2019, 39(12): 56-59,78. (in Chinese) doi: 10.7640/zggwjs201912012 [5] 欧阳波, 王旭生, 卓 胜, 等. 预应力混凝土管桩筏形基础中塔吊基础优化设计案例分析[J]. 建筑结构,2019,49(S2):859-862. (OUYANG B, WANG X S, ZHUO S, et al. Case study on optimal design of tower crane foundation in raft foundation of pre-stressed high-strength concrete pipe pile[J]. Building Structure,2019,49(S2):859-862. (in Chinese)OUYANG B, WANG X S, ZHUO S, et al. Case study on optimal design of tower crane foundation in raft foundation of pre-stressed high-strength concrete pipe pile[J]. Building Structure, 2019, 49(S2): 859-862. (in Chinese) [6] 中华人民共和国住房和城乡建设部. 建筑桩基技术规范: JGJ 94–2008[S]. 北京: 中国建筑工业出版社, 2008. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building pile foundations: JGJ 94–2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building pile foundations: JGJ 94–2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese) [7] 中华人民共和国住房和城乡建设部. 塔式起重机混凝土基础工程技术标准: JGJ/T 187–2019[S]. 北京: 中国建筑工业出版社, 2019. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for concrete foundation engineering of tower cranes: JGJ/T 187–2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for concrete foundation engineering of tower cranes: JGJ/T 187–2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese) [8] 赵少飞, 李 可, 张丽华. 含不同桩径桩基的桩顶作用效应计算分析[J]. 岩土工程学报,2011,33(S2):246-249. (ZHAO S F, LI K, ZHANG L H. Calculation and analysis of acting forces on pile top of foundation with piles with different diameters[J]. Chinese Journal of Geotechnical Engineering,2011,33(S2):246-249. (in Chinese)ZHAO S F, LI K, ZHANG L H. Calculation and analysis of acting forces on pile top of foundation with piles with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 246-249. (in Chinese) [9] 肖耀廷, 党发宁, 方建银, 等. 不对称布桩桩基的桩顶荷载效应分析[J]. 工业建筑,2015,45(4):117-119. (XIAO Y T, DANG F N, FANG J Y, et al. Analysis of acting force on pile top of foundation with asymmetric piles[J]. Industrial Construction,2015,45(4):117-119. (in Chinese)XIAO Y T, DANG F N, FANG J Y, et al. Analysis of acting force on pile top of foundation with asymmetric piles[J]. Industrial Construction, 2015, 45(4): 117-119. (in Chinese) [10] 崔浩然, 张 英, 杨 森, 等. 塔吊偏心设置时桩基础桩顶作用效应分析[J]. 地下空间与工程学报,2022,18(2):415-420. (CUI H R, ZHANG Y, YANG L, et al. Analysis on the acting force on pile top under tower crane being eccentrically set on the pile foundation[J]. Chinese Journal of Underground Space and Engineering,2022,18(2):415-420. (in Chinese) doi: 10.3969/j.issn.1673-0836.2022.2.dxkj202202008CUI H R, ZHANG Y, YANG L, et al. Analysis on the acting force on pile top under tower crane being eccentrically set on the pile foundation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(2): 415-420. (in Chinese) doi: 10.3969/j.issn.1673-0836.2022.2.dxkj202202008 -