留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FDTD管道渗漏异常GPR正演模拟与特征分析

黄小林 王佳龙 李勇 余涛 杨磊 黄苍成

黄小林, 王佳龙, 李勇, 余涛, 杨磊, 黄苍成. 基于FDTD管道渗漏异常GPR正演模拟与特征分析[J]. 岩土工程技术, 2025, 39(3): 409-415. doi: 10.20265/j.cnki.issn.1007-2993.2024-0204
引用本文: 黄小林, 王佳龙, 李勇, 余涛, 杨磊, 黄苍成. 基于FDTD管道渗漏异常GPR正演模拟与特征分析[J]. 岩土工程技术, 2025, 39(3): 409-415. doi: 10.20265/j.cnki.issn.1007-2993.2024-0204
Huang Xiaolin, Wang Jialong, Li Yong, Yu Tao, Yang Lei, Huang Cangcheng. Characteristic analysis of GPR forward simulation of pipeline leakage abnormal based on FDTD[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 409-415. doi: 10.20265/j.cnki.issn.1007-2993.2024-0204
Citation: Huang Xiaolin, Wang Jialong, Li Yong, Yu Tao, Yang Lei, Huang Cangcheng. Characteristic analysis of GPR forward simulation of pipeline leakage abnormal based on FDTD[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 409-415. doi: 10.20265/j.cnki.issn.1007-2993.2024-0204

基于FDTD管道渗漏异常GPR正演模拟与特征分析

doi: 10.20265/j.cnki.issn.1007-2993.2024-0204
详细信息
    作者简介:

    黄小林,男,1983年生,高级工程师。研究方向为探地雷达法在公路、桥梁与隧道工程无损检测中的应用。E-mail:317006186@qq.com

    通讯作者:

    王佳龙,男,1991年生,工程师。研究方向为地球物理方法在工程检测及地质调查中的应用研究。E-mail:710636168@qq.com

  • 中图分类号: P631

Characteristic analysis of GPR forward simulation of pipeline leakage abnormal based on FDTD

  • 摘要: 基于管道渗漏异常区与周边土壤存在明显介电差异特点,采用了一种分辨率高、抗干扰能力强、高效、无损的探地雷达(Ground Penetrating Radar,GPR)检测成像技术,用以解决地下管道渗漏异常区的准确识别问题。为了提高对地下管道渗漏雷达图像特征的认识,采用时域有限差分法(Finite Difference Time Domain,FDTD)模拟了不同材质管道、不同填充物质、不同渗漏位置和范围下的 GPR 电磁波响应特征,并应用偏移成像技术将分散于目标体两侧的能量汇聚,使反射波正确归位,有效提高探地雷达剖面横向分辨率,最终确立地下管道渗漏正演模拟特征图谱,为实际探地雷达探测图像解释提供理论基础。实例管道探测结果表明,探地雷达法可准确识别有效探测深度下管道两侧一定范围的渗漏异常,且异常特征清晰、显著。模拟结果可为地下管道渗漏探测识别提供参考。

     

  • 图  1  探地雷达探测地下管线原理图

    图  2  管道GPR成像过程与偏移结果示意图

    图  3  正演模拟背景模型

    图  4  金属管道不同填充模拟结果

    图  5  金属管道正下方渗漏异常模拟结果

    图  6  非金属管道不同填充模拟结果

    图  7  非金属管道正下方渗漏异常模拟结果

    图  8  管道两侧不同异常范围与埋深模拟结果

    图  9  GPR实测剖面与偏移处理结果图

    图  10  钻孔验证图

    表  1  模型参数表

    名称参数
    模型尺寸6 m×2 m
    天线中心频率600 MHz
    天线收发距40 mm
    计算步长20 mm
    时窗4×10−8 s
    下载: 导出CSV
  • [1] 王帅超. 城市地下管道渗漏引起的路面塌陷机理分析与研究[D]. 郑州: 郑州大学, 2017. (WANG S C. Analysis and study on subsidence mechanisms of road caused by leakage of urban underground pipeline[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)

    WANG S C. Analysis and study on subsidence mechanisms of road caused by leakage of urban underground pipeline[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)
    [2] 范立岗, 任小强, 谢海涛, 等. 地质雷达在顶管施工管线周边土体病害检测中的运用[J]. 北京测绘,2020,34(9):1293-1296. (FAN L G, REN X Q, XIE H T, et al. The application of ground penetrating radar in detecting soil diseases around pipe jacking construction pipelines[J]. Beijing Surveying and Mapping,2020,34(9):1293-1296. (in Chinese)

    FAN L G, REN X Q, XIE H T, et al. The application of ground penetrating radar in detecting soil diseases around pipe jacking construction pipelines[J]. Beijing Surveying and Mapping, 2020, 34(9): 1293-1296. (in Chinese)
    [3] 陈昌彦, 肖 敏, 贾 辉, 等. 城市道路地下病害成因及基于综合探测的工程分类探讨[J]. 测绘通报,2013(S2):5-9. (CHEN C Y, XIAO M, JIA H, et al. The genesis of urban underground roads diseases and classification of engineer[J]. Bulletin of Surveying and Mapping,2013(S2):5-9. (in Chinese)

    CHEN C Y, XIAO M, JIA H, et al. The genesis of urban underground roads diseases and classification of engineer[J]. Bulletin of Surveying and Mapping, 2013(S2): 5-9. (in Chinese)
    [4] 刘春明, 魏慧勇, 张海军. 城市道路塌陷与地下管线的关系[J]. 城市勘测,2020(5):183-187. (LIU C M, WEI H Y, ZHANG H J. Relationship between urban road collapse and underground pipeline[J]. Urban Geotechnical Investigation & Surveying,2020(5):183-187. (in Chinese)

    LIU C M, WEI H Y, ZHANG H J. Relationship between urban road collapse and underground pipeline[J]. Urban Geotechnical Investigation & Surveying, 2020(5): 183-187. (in Chinese)
    [5] 曾雄鹰, 王佳龙, 梁晓东, 等. 基于双频高动态探地雷达技术的道路地下病害检测研究[J]. 地球物理学进展,2022,37(5):2225-2232. (ZENG X Y, WANG J L, LIANG X D, et al. Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology[J]. Progress in Geophysics,2022,37(5):2225-2232. (in Chinese)

    ZENG X Y, WANG J L, LIANG X D, et al. Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology[J]. Progress in Geophysics, 2022, 37(5): 2225-2232. (in Chinese)
    [6] 朱幸福, 高 将, 程 鹏. 城市地下排水管道缺陷检测与修复[J]. 江苏建筑职业技术学院学报,2017,17(1):64-66. (ZHU X F, GAO J, CHENG P, et al. Defect detection and repair of urban underground drainage pipeline[J]. Jiangsu Vocational Institute of Architecture Technology,2017,17(1):64-66. (in Chinese)

    ZHU X F, GAO J, CHENG P, et al. Defect detection and repair of urban underground drainage pipeline[J]. Jiangsu Vocational Institute of Architecture Technology, 2017, 17(1): 64-66. (in Chinese)
    [7] 刘 海, 黄肇刚, 岳云鹏, 等. 地下管线渗漏环境下探地雷达信号特征分析[J]. 电子与信息学报,2022,44(4):1257-1264. (LIU H, HUANG Z G, YUE Y P. Characteristics analysis of ground penetrating radar signals for groundwater pipe leakage environment[J]. Journal of Electronics & Information Technology,2022,44(4):1257-1264. (in Chinese)

    LIU H, HUANG Z G, YUE Y P. Characteristics analysis of ground penetrating radar signals for groundwater pipe leakage environment[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1257-1264. (in Chinese)
    [8] 胡群芳, 郑泽昊, 刘 海, 等. 三维探地雷达在城市市政管线渗漏探测中的应用[J]. 同济大学学报(自然科学版),2020,48(7):972-981. (HU Q F, ZHENG Z H, LIU H, et al. Application of 3D ground penetrating radar to leakage detection of urban underground pipes[J]. Journal of Tongji University (Natural Science),2020,48(7):972-981. (in Chinese)

    HU Q F, ZHENG Z H, LIU H, et al. Application of 3D ground penetrating radar to leakage detection of urban underground pipes[J]. Journal of Tongji University (Natural Science), 2020, 48(7): 972-981. (in Chinese)
    [9] 金 鑫. 管线渗漏异常探地雷达数据的电场分量成像分析[J]. 煤田地质与勘探,2018,46(2):159-163. (JIN X. Study on electric field component imaging of leakage in pipeline using GPR[J]. Coal Geology & Exploration,2018,46(2):159-163. (in Chinese)

    JIN X. Study on electric field component imaging of leakage in pipeline using GPR[J]. Coal Geology & Exploration, 2018, 46(2): 159-163. (in Chinese)
    [10] 韩 雪, 张 彬. 基于FDTD管线渗漏异常GPR数据的电场分量成像研究[J]. 数学的实践与认识,2018,48(19):323-328. (HAN X, ZHANG B. Study on electric field component imaging based on GPR data of abnormal FDTD leakage in pipeline[J]. Mathematics in Practice and Theory,2018,48(19):323-328. (in Chinese)

    HAN X, ZHANG B. Study on electric field component imaging based on GPR data of abnormal FDTD leakage in pipeline[J]. Mathematics in Practice and Theory, 2018, 48(19): 323-328. (in Chinese)
    [11] 李方震, 沈宇鹏, 黄乐艺, 等. 探地雷达识别管线渗漏病害的试验研究[J]. 城市地质,2017,12(1):20-29. (LI F Z, SHEN Y P, HUANG L Y, et al. Study on application of test method for GPR pipeline seepage defects[J]. Urban Geology,2017,12(1):20-29. (in Chinese)

    LI F Z, SHEN Y P, HUANG L Y, et al. Study on application of test method for GPR pipeline seepage defects[J]. Urban Geology, 2017, 12(1): 20-29. (in Chinese)
    [12] 王佳龙, 曾雄鹰, 梁晓东, 等. 地下金属与非金属管道正演模拟与应用研究[J]. 现代电子技术,2023,46(5):114-118. (WANG J L, ZENG X Y, LIANG X D, et al. Research on forward modeling and application of underground metallic and nonmetallic pipelines[J]. Modern Electronics Technique,2023,46(5):114-118. (in Chinese)

    WANG J L, ZENG X Y, LIANG X D, et al. Research on forward modeling and application of underground metallic and nonmetallic pipelines[J]. Modern Electronics Technique, 2023, 46(5): 114-118. (in Chinese)
    [13] 梁小强, 杨道学, 张可能, 等. FDTD数值模拟在GPR管线探测中的应用[J]. 地球物理学进展,2017,32(4):1803-1807. (LIANG X Q, YANG D X, ZHANG K N, et al. Application of FDTD numerical simulation of Ground Penetrating Radar inpipeline detection[J]. Progress in Geophysics,2017,32(4):1803-1807. (in Chinese)

    LIANG X Q, YANG D X, ZHANG K N, et al. Application of FDTD numerical simulation of Ground Penetrating Radar inpipeline detection[J]. Progress in Geophysics, 2017, 32(4): 1803-1807. (in Chinese)
    [14] YEE K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307. doi: 10.1109/TAP.1966.1138693
    [15] 张 军, 陈思茹, 张子琛, 等. 基于GPR和F-K法的桥面隐性病害无损检测方法[J]. 中国公路学报,2016,29(7):110-116. (ZHANG J, CHEN S R, ZHANG Z C, et al. Non-destructive detection method for bridge hidden diseases based on GPR and F-K method[J]. China Journal of Highway and Transport,2016,29(7):110-116. (in Chinese)

    ZHANG J, CHEN S R, ZHANG Z C, et al. Non-destructive detection method for bridge hidden diseases based on GPR and F-K method[J]. China Journal of Highway and Transport, 2016, 29(7): 110-116. (in Chinese)
    [16] 李光辉, 徐 汇, 刘 敏. 基于探地雷达杂波抑制与偏移成像的树木根系定位方法[J]. 农业机械学报,2022,53(3):206-214. (LI G H, XU H, LIU M. Tree-Root localization method based on migration imaging with clutter suppressed in ground-penetrating radar[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):206-214. (in Chinese)

    LI G H, XU H, LIU M. Tree-Root localization method based on migration imaging with clutter suppressed in ground-penetrating radar[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 206-214. (in Chinese)
    [17] 邓方进. 探地雷达钢筋正演模拟及偏移成像研究[J]. 隧道建设(中英文),2019,39(S1):188-193. (DENG F J. Forward modeling and migration imaging of rebar detection by ground penetrating radar[J]. Tunnel Construction,2019,39(S1):188-193. (in Chinese)

    DENG F J. Forward modeling and migration imaging of rebar detection by ground penetrating radar[J]. Tunnel Construction, 2019, 39(S1): 188-193. (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-07-06
  • 录用日期:  2024-08-29
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回