Influence of deep-buried shield tunneling construction undercrossing existing railways
-
摘要: 城市综合交通建设进程中,新建公路或地铁线路盾构隧道下穿既有铁路的交叉工程日益增多。以往研究采用数值模拟和现场监测等手段分析了盾构对铁路变形的影响规律,盾构隧道埋深一般不超过20 m。由于隧道施工时空效应,超过20 m埋深隧道下穿施工对铁路变形特征的影响尚不清晰。以武汉市某公路盾构隧道下穿京广铁路为例,采用自动化监测手段,分析了大埋深盾构隧道下穿施工对既有铁路轨道及路基沉降、接触网倾斜的影响规律。研究发现,针对大埋深盾构隧道下穿施工,铁路路基变形、轨道变形及接触网变形具有一定的滞后性。铁路轨道和路基沉降槽呈V型或U型,影响宽度约为75 m,明显大于普通浅埋盾构隧道。研究成果可为此类深埋盾构下穿工程施工提供数据支撑和参考。Abstract: The number of cross-project constructions where new subway lines undercross existing railways using shield tunneling is increasing with the urban comprehensive transportation construction. Previous studies have analyzed the impact of shield tunneling on railway deformation through numerical simulation and on-site monitoring, with tunnel depths generally below 20 m. Due to the time-space effect during tunnel construction, the influence of tunneling at depths exceeding 20 m on railway deformation characteristics remains unclear. This research takes the example of a highway shield tunnel undercrossing the Beijing-Guangzhou Railway in Wuhan city and uses automated monitoring methods to analyze the influence of deep-buried shield tunneling construction on the settlement of existing railway tracks, subgrades, and the inclination of the railway catenary system. The study revealed that for deep-buried shield tunneling construction, the deformations of the railway subgrades, tracks, and overhead contact system have a certain lag. The settlement troughs of the railway tracks and subgrades exhibit a V-shaped or U-shaped pattern, with an affected width of approximately 75 m, which is significantly larger than that of ordinary shallow-buried shield tunnels. The research findings can provide data support and reference for similar deep-buried shield tunneling projects that undercross existing railways.
-
表 1 主要土层物理力学参数
土层 重度
/(kN∙m−3)黏聚力
/kPa内摩擦角
/(°)压缩模量
/MPa(1-4)淤泥 18.6 4.7 (4a)黏土夹碎石土 19.4 57 23 10.3 (5-2-1)红黏土 18.7 46 19 15.1 表 2 主要岩体力学参数
岩层 承载力
/kPa压缩模量/MPa (8a)中等风化灰岩 2500 (8)灰岩 5000 (9-1)中等风化泥质砂岩 1200 46 (9-2)石英砂岩 6000 表 3 施工监测项目
监测项目 监测点数量/个 路基竖向、水平位移监测 30 轨道竖向、水平位移监测 30 接触网立柱竖向位移、倾斜监测 16 表 4 施工期既有铁路监测结果
监测项目 监测最大值 所在点位 出现时间(年-月-日) 控制值 轨道变形 竖向位移/mm −1.97 XXGD05 2022-09-13 −8~+3 顺铁路方向(Y)水平位移/mm 1.44 SXGD02 2022-09-14 ±7 垂直铁路方向(X)水平位移/mm 1.61 SXGD04 2022-09-14 ±7 路基变形 竖向位移/mm −1.99 XXLJ12 2022-09-14 ±10 顺铁路方向(Y)水平位移/mm 1.82 SXLJ01 2022-09-14 ±7 垂直铁路方向(X)水平位移/mm −2.34 XXLJ10 2022-09-14 ±7 接触网变形 竖向位移/mm −1.3 JCW108 2022-09-14 ±5 顺铁路方向(Y)倾斜/% 0.16 JCW108 2022-09-14 0.5 垂直铁路方向(X)倾斜/% −0.21 JCW108 2022-09-14 0.5 -
[1] 戴志成. 超大直径盾构隧道浅埋下穿铁路变形及控制技术研究[J]. 铁道标准设计, 2025, 69(7): 138-146. (DAI Z C. Research on deformation and control technologies for ultra-large-diameter shield tunnels with shallow depths undercrossing railways[J]. Railway Standard Design, 2025, 69(7): 138-146. (in Chinese)DAI Z C. Research on deformation and control technologies for ultra-large-diameter shield tunnels with shallow depths undercrossing railways[J]. Railway Standard Design, 2025, 69(7): 138-146. [2] 唐 汐. 暗挖地铁隧道下穿既有线高架区间影响分析[J]. 建筑结构, 2023, 53(9): 141-146,152. (TANG X. Influence analysis on underground excavation of subway tunnels undercrossing elevated section of existing lines[J]. Building Structure, 2023, 53(9): 141-146,152. (in Chinese)TANG X. Influence analysis on underground excavation of subway tunnels undercrossing elevated section of existing lines[J]. Building Structure, 2023, 53(9): 141-146,152. (in Chinese) [3] 余 龙. 地铁盾构侧穿既有铁路桥梁技术措施研究[J]. 岩土工程技术, 2016, 30(3): 158-162. (YU L. Research on technical measure for metro shieldtunnel lateral crossing below existing railway bridge[J]. Geotechnical Engineering Technique, 2016, 30(3): 158-162. (in Chinese) doi: 10.3969/j.issn.1007-2993.2016.03.011YU L. Research on technical measure for metro shieldtunnel lateral crossing below existing railway bridge[J]. Geotechnical Engineering Technique, 2016, 30(3): 158-162. (in Chinese) doi: 10.3969/j.issn.1007-2993.2016.03.011 [4] 徐干成, 李成学, 王后裕, 等. 地铁盾构隧道下穿京津城际高速铁路影响分析[J]. 岩土力学, 2009, 30(S2): 269-272,276. (XU G C, LI C X, WANG H Y, et al. Analysis of influence of metro shield tunneling crossing underneath high speed railway[J]. Rock and Soil Mechanics, 2009, 30(S2): 269-272,276. (in Chinese)XU G C, LI C X, WANG H Y, et al. Analysis of influence of metro shield tunneling crossing underneath high speed railway[J]. Rock and Soil Mechanics, 2009, 30(S2): 269-272,276. (in Chinese) [5] 黄 龙, 吴国伟, 涂家康. 软土地区盾构隧道斜下穿多股铁路路基变形规律[J]. 城市轨道交通研究, 2023, 26(9): 170-174,179. (HUANG L, WU G W, TU J K. Deformation law of shield tunnel oblique under-passing existing multi-track railway subgrade in soft soil area[J]. Urban Mass Transit, 2023, 26(9): 170-174,179. (in Chinese)HUANG L, WU G W, TU J K. Deformation law of shield tunnel oblique under-passing existing multi-track railway subgrade in soft soil area[J]. Urban Mass Transit, 2023, 26(9): 170-174,179. (in Chinese) [6] 邓海鹏, 丁祖德, 李兴龙. 盾构隧道下穿多股铁路影响分析[J]. 施工技术(中英文), 2024, 53(1): 130-135. (DENG H P, DING Z D, LI X L. Analysis on influence of shield tunnel undercross multiple railway lines[J]. Construction Technology, 2024, 53(1): 130-135. (in Chinese)DENG H P, DING Z D, LI X L. Analysis on influence of shield tunnel undercross multiple railway lines[J]. Construction Technology, 2024, 53(1): 130-135. (in Chinese) [7] 李 斯. 盾构隧道下穿高铁路基沉降监测与预警[J]. 铁道建筑, 2023, 63(11): 127-130. (LI S. Monitoring and early warning of subgrade settlement for high speed railway undercrossed by shield tunnel[J]. Railway Engineering, 2023, 63(11): 127-130. (in Chinese) doi: 10.3969/j.issn.1003-1995.2023.11.24LI S. Monitoring and early warning of subgrade settlement for high speed railway undercrossed by shield tunnel[J]. Railway Engineering, 2023, 63(11): 127-130. (in Chinese) doi: 10.3969/j.issn.1003-1995.2023.11.24 [8] 姜忻良, 王振军. 盾构法隧道施工工序对地表既有铁路的影响分析[J]. 建筑结构, 2013, 43(S2): 96-99. (JIANG X L, WANG Z J. Analysis of influence of the construction procedure of metro shield tunnel under railway[J]. Building Structure, 2013, 43(S2): 96-99. (in Chinese)JIANG X L, WANG Z J. Analysis of influence of the construction procedure of metro shield tunnel under railway[J]. Building Structure, 2013, 43(S2): 96-99. (in Chinese) [9] 方 焘, 梁 连, 颜建伟. 不同埋深下盾构隧道施工引起的地层变形试验[J]. 长江科学院院报, 2023, 40(3): 85-92. (FANG T, LIANG L, YAN J W. Experimental study on stratum deformation caused by shield tunnelling at different buried depths[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(3): 85-92. (in Chinese) doi: 10.11988/ckyyb.20211190FANG T, LIANG L, YAN J W. Experimental study on stratum deformation caused by shield tunnelling at different buried depths[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(3): 85-92. (in Chinese) doi: 10.11988/ckyyb.20211190 [10] 阮 雷, 蹇蕴奇, 鲁茜茜, 等. 盾构隧道埋深对临近铁路桥梁的影响分析[J]. 隧道建设(中英文), 2018, 38(S1): 79-86. (RUAN L, JIAN Y Q, LU X X, et al. Analysis on influence of shield tunnel buried depth on adjacent railway bridges[J]. Tunnel Construction, 2018, 38(S1): 79-86. (in Chinese)RUAN L, JIAN Y Q, LU X X, et al. Analysis on influence of shield tunnel buried depth on adjacent railway bridges[J]. Tunnel Construction, 2018, 38(S1): 79-86. (in Chinese) [11] 国家铁路局. 邻近铁路营业线施工安全监测技术规程: TB 10314—2021[S]. 北京: 中国铁道出版社, 2021. (National Railway Administration of the People’s Republic of China. Technical specification for safety monitoring of operating railway infrastructures with adjacent constructions: TB 10314—2021[S]. Beijing: China Railway Publishing House, 2021. (in Chinese)National Railway Administration of the People’s Republic of China. Technical specification for safety monitoring of operating railway infrastructures with adjacent constructions: TB 10314—2021[S]. Beijing: China Railway Publishing House, 2021. (in Chinese) -