Dynamic monitoring of artificial recharge of groundwater and evaluation of geothermal resources
-
摘要: 基于地下热水长期动态监测、综合评价与研究、水文地质地质勘探、地球物理勘探等方法,开展灰汤地热矿区人工回灌地下热水资源评价。结果表明:水位较人工回灌试验前升高了24.66 m,改善了工作区地下水位持续下降的趋势;水温较人工回灌前平均下降9.33℃;大部分离子或元素含量基本能保持稳定;通过计算,灰汤地热资源总量为7.9503×1013 kJ,地下热水允许开采量控制在3902 m3/d是可行的。Abstract: The evaluation of artificial recharge groundwater hot water resources in the Huitang geothermal mining area was carried out through long-term dynamic monitoring, comprehensive evaluation, and hydrogeological geological and geophysical exploration. The results show that the water level increased by 24.66 meters compared to before the artificial recharge test, preventing the trend of continuous decline in groundwater levels in the working area. The water temperature has decreased by an average of 9.33 ℃ compared to before artificial recharge. The content of most ions or elements can remain stable. Through calculation, the total geothermal resources of Huitang is 7.9503 × 1013 kJ, and it is feasible to control the allowable mining output of underground hot water at 3902 m3/d.
-
Key words:
- geothermal resources /
- artificial recharge /
- dynamic monitoring /
- resource evaluation
-
表 1 监测期间开采量、回灌量统计表
时段 回灌量 开采量 Ⅲ、Ⅳ号 Ⅴ号 Ⅵ号 Ⅶ号 合计 全年 661262 240801 194594 97945 326060 859400 平均每天 1811.68 659.73 533.13 268.34 893.32 2354.52 表 2 水位标高监测基本数据统计表
项目 水位标高/m 回灌井 Ⅶ Ⅵ Ⅴ Ⅳ Ⅲ 统计数/个 73 4 73 73 48 73 最大值 50.85 54.83 63.74 64.45 64.27 63.78 最小值 31.96 50.56 45.48 45.03 49.72 45.36 平均值 43.79 52.94 55.28 55.08 57.21 55.12 表 3 水温监测汇总表
项目 水温/℃ Ⅶ号 Ⅵ号 Ⅴ号 Ⅳ号 Ⅲ号 统计个数 73 73 73 38 35 最大值 85.6 87.5 84.3 86.7 88.2 最小值 72.3 75.4 73.7 77.2 80.1 平均值 76.21 81.45 77.58 83.18 83.71 表 4 水质试验结果统计表
mg/L 指标 Ⅴ号井回灌阶段 Ⅵ-1 Ⅶ号井回灌阶段 回灌井 最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值 K+ 4.74 3.22 4.12 3.54 4.08 2.96 3.44 4.56 3.3 3.74 Ca2+ 15.07 3.06 8.87 7.19 13.9 7.08 9.91 29.98 20.06 26.52 Na+ 93.59 53.05 72.78 68.50 76.7 46.34 57.46 13.79 4.02 8.43 Mg2+ 2.2 0.12 0.37 0.44 1.1 0.42 0.78 4.41 2.02 3.38 Al3+ 0.05 0.01 0.04 0.01 0.05 0.01 0.04 0.2 0.04 0.08 Fe 0.432 0.008 0.059 0.006 0.064 0.005 0.014 0.096 0.008 0.032 Cl− 7.6 3.04 4.95 6.73 9.12 2.28 5.63 19.2 9.12 13.33 SO42− 71.87 40 57 35.20 59.44 37.8 44.09 28.61 11.67 18.15 HCO3− 164.75 114.41 143.27 140.00 146.45 117.46 127.18 CO32− 6.1 0 1.59 0.00 9 0 2.39 1.52 0 0.25 NO3− 1.89 0.03 0.34 0.76 1.8 0.13 0.6 7.56 0.28 1.92 F− 5.17 3.8 4.25 4.24 4.5 3.4 4.01 0.49 0.11 0.2 Li 0.59 0.37 0.5 0.42 0.57 0.35 0.42 Sr 0.104 0.06 0.084 0.075 0.1 0.066 0.084 Zn 0.0036 0.0002 0.0016 0.0032 0.003 0.0001 0.0008 0.022 0.001 0.0098 Br− 0.007 0.001 0.002 0.001 0.007 0.001 0.002 0.007 0.001 0.002 I− 0.005 0.001 0.002 0.004 0.005 0.001 0.002 0.019 0.001 0.004 Mn 0.011 0.001 0.0079 0.0007 0.01 0.001 0.0028 0.113 0.0004 0.0389 Hg 0.0008 0.0001 0.0004 0.0001 0.0008 0.0001 0.0005 0.0006 0.0002 0.0004 As 0.22 0.0003 0.0257 0.0120 0.1 0.0003 0.0129 0.0008 0.0003 0.0006 H2SiO3 93 57.85 75.85 92.90 91.2 60.39 76.11 Ba 0.021 0.001 0.003 0.004 0.01 0.001 0.002 Ni 0.0015 0.0004 0.0009 0.0003 0.0015 0.0004 0.0009 色度 0 0 0 0 0 0 0 0 0 0 浑浊度 0 0 0 0 0 0 0 0 0 0 pH 8.67 7.94 8.2 8.18 8.67 8.03 8.32 8.32 7.18 7.75 COD 2.64 0.89 1.85 1.76 2.56 1.52 1.87 4.8 1.44 3.04 fCO2 4.4 0 1.14 2.20 2.2 0 0.45 溶解性总固体 453.74 218.96 312.29 289.51 340.88 222.72 271.88 276.24 115.96 189.89 总硬度 38.66 15.78 23.66 19.75 38.8 19.39 27.78 92.25 58.4 79.86 暂时硬度 38.66 15.78 23.66 19.75 38.8 19.39 27.78 92.25 58.4 79.86 负硬度 117.77 73.9 97.28 0.00 100.61 63.7 80.29 总碱度 140 100 120.94 114.80 120 100 108.08 表 5 水位标高平均值数据对比表
开采井 水位标高平均值/m 备注 回灌前 监测期间 水位升高 Ⅲ 29.60 55.12 25.52 Ⅳ、Ⅶ开采井因监测数据不完整,导致与Ⅲ、Ⅴ、Ⅵ号开采井平均值差距较大,但总体变化趋势一致 Ⅳ 57.21 Ⅴ 29.75 55.08 25.33 Ⅵ 30.54 55.28 24.74 Ⅶ 29.91 52.94 23.03 表 6 水温平均值数据对比表
开采井 水温平均值/℃ 回灌前 监测阶段 水温降低 Ⅲ 83.71 Ⅳ 91.5 83.18 8.32 Ⅴ 87.8 77.58 10.22 Ⅵ 90.9 81.45 9.45 Ⅶ 76.21 表 7 监测前后水位标高对比表
m 阶段 Ⅲ Ⅳ Ⅴ Ⅵ 平均值 监测起始 51.09 50.25 51.38 51.82 监测结束 56.60 56.85 56.25 56.86 升高值 5.51 6.60 4.87 5.04 5.51 注:Ⅶ号开采井因后期未能监测,不作对比。 表 8 监测前后水温对比表
℃ 阶段 Ⅲ(Ⅳ) Ⅴ Ⅵ Ⅶ 平均值 监测起始 76.0 82.0 80.0 83.4 监测结束 75.5 81.4 79.3 82.7 下降值 0.5 0.6 0.7 0.7 0.6 -
[1] 吴继强, 张纪哲, 李晓辉, 等. 西安市城区地热水人工加压回灌试验研究[J]. 水资源与水工程学报,2014,25(5):215-218. (WU J Q, ZHANG J Z, LI X H, et al. Experiment on artificial pressure re-injection of geothermal water in Xi’an suburb[J]. Journal of Water Resources & Water Engineering,2014,25(5):215-218. (in Chinese) doi: 10.11705/j.issn.1672-643X.2014.05.047WU J Q, ZHANG J Z, LI X H, et al. Experiment on artificial pressure re-injection of geothermal water in Xi’an suburb[J]. Journal of Water Resources & Water Engineering, 2014, 25(5): 215-218. (in Chinese) doi: 10.11705/j.issn.1672-643X.2014.05.047 [2] 樊柄宏, 叶海龙, 白细民, 等. 地热流体动态对温汤地热田地热水灌采平衡的指示意义[J]. 地质论评,2024,70(S1):195-198. (FAN B H, YE H L, BAI X M, et al. Indicative significance of geothermal fluid dynamics on the balance of geothermal water injection and extraction in Wentang geothermal field[J]. Geological Review,2024,70(S1):195-198. (in Chinese)FAN B H, YE H L, BAI X M, et al. Indicative significance of geothermal fluid dynamics on the balance of geothermal water injection and extraction in Wentang geothermal field[J]. Geological Review, 2024, 70(S1): 195-198. (in Chinese) [3] 孙焕泉, 毛 翔, 吴陈冰洁, 等. 地热资源勘探开发技术与发展方向[J]. 地学前缘,2024,31(1):400-411. (SUN H Q, MAO X, WU C B J, et al. Geothermal resources exploration and development technology: current status and development directions[J]. Earth Science Frontiers,2024,31(1):400-411. (in Chinese)SUN H Q, MAO X, WU C B J, et al. Geothermal resources exploration and development technology: current status and development directions[J]. Earth Science Frontiers, 2024, 31(1): 400-411. (in Chinese) [4] 何满潮, 刘 斌, 姚磊华, 等. 地热水对井回灌渗流场理论研究[J]. 中国矿业大学学报,2004,33(3):245-248. (HE M C, LIU B, YAO L H, et al. Study on theory of seepage field around geothermal production-reinfection doublets wells[J]. Journal of China University of Mining & Technology,2004,33(3):245-248. (in Chinese) doi: 10.3321/j.issn:1000-1964.2004.03.003HE M C, LIU B, YAO L H, et al. Study on theory of seepage field around geothermal production-reinfection doublets wells[J]. Journal of China University of Mining & Technology, 2004, 33(3): 245-248. (in Chinese) doi: 10.3321/j.issn:1000-1964.2004.03.003 [5] 周世海, 杨询昌, 梁 伟, 等. 德州市城区地热水人工回灌试验研究[J]. 山东国土资源,2007,23(9):11-14. (ZHOU S H, YANG X C, LIANG W, et al. Study on geothermal re-injection experiment in districts in Dezhou city[J]. Shandong Land and Resources,2007,23(9):11-14. (in Chinese) doi: 10.3969/j.issn.1672-6979.2007.09.004ZHOU S H, YANG X C, LIANG W, et al. Study on geothermal re-injection experiment in districts in Dezhou city[J]. Shandong Land and Resources, 2007, 23(9): 11-14. (in Chinese) doi: 10.3969/j.issn.1672-6979.2007.09.004 [6] 高宗军, 夏 璐, 何雪琴, 等. 砂岩热储地热尾水回灌悬浮物堵塞研究[J]. 地下水,2021,43(1):1-3. (GAO Z J, XIA L, HE X Q, et al. Study on suspended matter blockage in geothermal tail water recharge of sandstone thermal reservoir[J]. Ground Water,2021,43(1):1-3. (in Chinese)GAO Z J, XIA L, HE X Q, et al. Study on suspended matter blockage in geothermal tail water recharge of sandstone thermal reservoir[J]. Ground Water, 2021, 43(1): 1-3. (in Chinese) [7] 乜 艳, 赵长荣, 胡云状, 等. 廊坊地区浅层地热能开发前景及地下水回灌试验研究[J]. 地质调查与研究,2012,35(4):310-314. (NIE Y, ZHAO C R, HU Y Z, et al. Groundwater recharge experiments for shallow geothermal energy development[J]. Geological Survey and Research,2012,35(4):310-314. (in Chinese)NIE Y, ZHAO C R, HU Y Z, et al. Groundwater recharge experiments for shallow geothermal energy development[J]. Geological Survey and Research, 2012, 35(4): 310-314. (in Chinese) [8] 朱红丽. 开封市超深层地热水人工回灌补源研究[D]. 焦作: 河南理工大学, 2011. (ZHU H L. The research on artificial recharge of super-deep geothermic water in Kaifeng city[D]. Jiaozuo: Henan Polytechnic University, 2011. (in Chinese)ZHU H L. The research on artificial recharge of super-deep geothermic water in Kaifeng city[D]. Jiaozuo: Henan Polytechnic University, 2011. (in Chinese) [9] 高宗军, 郭加朋, 李 哲, 等. 东营市城区地热储人工回灌条件及分区研究[J]. 地下水,2009,31(5):4-8. (GAO Z J, GUO J P, LI Z, et al. Study on condition of artificial recharge & partitions of geothermal reservoir in the urban area of Dongying city[J]. Ground Water,2009,31(5):4-8. (in Chinese) doi: 10.3969/j.issn.1004-1184.2009.05.002GAO Z J, GUO J P, LI Z, et al. Study on condition of artificial recharge & partitions of geothermal reservoir in the urban area of Dongying city[J]. Ground Water, 2009, 31(5): 4-8. (in Chinese) doi: 10.3969/j.issn.1004-1184.2009.05.002 [10] 何连发. 福州地热田人工回灌模式的探讨[J]. 福建地质,2004,23(2):77-81. (HE L F. On discussion of the artificial recharge pattern of geothermal fields in Fuzhou city[J]. Geology of Fujian,2004,23(2):77-81. (in Chinese) doi: 10.3969/j.issn.1001-3970.2004.02.004HE L F. On discussion of the artificial recharge pattern of geothermal fields in Fuzhou city[J]. Geology of Fujian, 2004, 23(2): 77-81. (in Chinese) doi: 10.3969/j.issn.1001-3970.2004.02.004 [11] 张进平, 王煜曦, 刘桂宏, 等. 通州区地热资源优化开采模式动态研究[J]. 工程力学,2022,39(6):247-256. (ZHANG J P, WANG Y X, LIU G H, et al. Dynamic study on optimal exploitation mode of geothermal resources in Beijing Tongzhou District[J]. Engineering Mechanics,2022,39(6):247-256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0086ZHANG J P, WANG Y X, LIU G H, et al. Dynamic study on optimal exploitation mode of geothermal resources in Beijing Tongzhou District[J]. Engineering Mechanics, 2022, 39(6): 247-256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0086 [12] 李娜娜, 吕 俊, 李 兵, 等. 基于水热耦合的眉县城区地下水抽采回灌地热开发模型[J]. 地下水,2024,46(1):130-132. (LI N N, LV J, LI B, et al. Geothermal development model of groundwater extraction and recharge in Mei Country urban area based on hydrothermal coupling[J]. Ground Water,2024,46(1):130-132. (in Chinese)LI N N, LV J, LI B, et al. Geothermal development model of groundwater extraction and recharge in Mei Country urban area based on hydrothermal coupling[J]. Ground Water, 2024, 46(1): 130-132. (in Chinese) [13] 马浩翔. 云南保山盆地地热资源特征及优化开采配置研究[D]. 昆明: 昆明理工大学, 2023. (MA H X. Characteristics of geothermal resources in Baoshan basin of Yunnan and optimization of exploitation configuration study[D]. Kunming: Kunming University of Science and Technology, 2023. (in Chinese)MA H X. Characteristics of geothermal resources in Baoshan basin of Yunnan and optimization of exploitation configuration study[D]. Kunming: Kunming University of Science and Technology, 2023. (in Chinese) [14] 王 辉, 张啟兴, 黄 鑫, 等. 青海省共和地区地热资源特征分析及利用研究[J]. 中国矿业,2023,32(6):167-174. (WANG H, ZHANG Q X, HUANG X, et al. Study on the characteristics and utilization of geothermal resources in Gonghe Area, Qinghai Province[J]. China Mining Magazine,2023,32(6):167-174. (in Chinese) doi: 10.12075/j.issn.1004-4051.20220760WANG H, ZHANG Q X, HUANG X, et al. Study on the characteristics and utilization of geothermal resources in Gonghe Area, Qinghai Province[J]. China Mining Magazine, 2023, 32(6): 167-174. (in Chinese) doi: 10.12075/j.issn.1004-4051.20220760 [15] 耿万青, 刘普峰, 邢化庐, 等. 环首都河北省县市区地热温泉资源赋存特征与潜力评价[J/OL]. 中国地质, (2024-06-13)[2024-06-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240612.1825.009.html. (GENG W Q, LIU P F, XING H L, et al. Occurrence characteristics and potential evaluation of geothermal hot spring resources in counties and urban areas around the capital of Hebei Province[J/OL]. Geology in China, (2024-06-13)[2024-06-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240612.1825.009.html. (in Chinese)GENG W Q, LIU P F, XING H L, et al. Occurrence characteristics and potential evaluation of geothermal hot spring resources in counties and urban areas around the capital of Hebei Province[J/OL]. Geology in China, (2024-06-13)[2024-06-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240612.1825.009.html. (in Chinese) [16] 何 阳, 杨贵花, 李雪宇, 等. 郴州市许家洞地区地热资源特征及资源量评价[J]. 华南地质,2024,40(1):133-142. (HE Y, YANG G H, LI X Y, et al. Evaluation of characteristics and reserves of geothermal resources in the Xujiadong Area, Chenzhou city[J]. South China Geology,2024,40(1):133-142. (in Chinese) doi: 10.3969/j.issn.2097-0013.2024.01.009HE Y, YANG G H, LI X Y, et al. Evaluation of characteristics and reserves of geothermal resources in the Xujiadong Area, Chenzhou city[J]. South China Geology, 2024, 40(1): 133-142. (in Chinese) doi: 10.3969/j.issn.2097-0013.2024.01.009 -