留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的顶管施工江堤变形预测研究

徐浩 廖铭新 卞士海 蒋建良 李奥典 许斌锋 罗伟锦

徐浩, 廖铭新, 卞士海, 蒋建良, 李奥典, 许斌锋, 罗伟锦. 基于机器学习的顶管施工江堤变形预测研究[J]. 岩土工程技术, 2025, 39(5): 639-647. doi: 10.20265/j.cnki.issn.1007-2993.2024-0287
引用本文: 徐浩, 廖铭新, 卞士海, 蒋建良, 李奥典, 许斌锋, 罗伟锦. 基于机器学习的顶管施工江堤变形预测研究[J]. 岩土工程技术, 2025, 39(5): 639-647. doi: 10.20265/j.cnki.issn.1007-2993.2024-0287
Xu Hao, Liao Mingxin, Bian Shihai, Jiang Jianliang, Li Aodian, Xu Binfeng, Luo Weijin. Prediction of river embankment deformation during pipe jacking based on machine learning[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 639-647. doi: 10.20265/j.cnki.issn.1007-2993.2024-0287
Citation: Xu Hao, Liao Mingxin, Bian Shihai, Jiang Jianliang, Li Aodian, Xu Binfeng, Luo Weijin. Prediction of river embankment deformation during pipe jacking based on machine learning[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 639-647. doi: 10.20265/j.cnki.issn.1007-2993.2024-0287

基于机器学习的顶管施工江堤变形预测研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0287
基金项目: 浙江省水利科技计划项目(RC2430)
详细信息
    作者简介:

    徐 浩,男,1984年生,高级工程师,主要从事水利工程建设与管理研究。E-mail:923566702@qq.com

    通讯作者:

    卞士海,男,1987年生,博士,高级工程师,主要从事土体力学性质、岩土工程施工智能预测研究。E-mail:bian_sh@163.com

  • 中图分类号: TV5

Prediction of river embankment deformation during pipe jacking based on machine learning

  • 摘要: 过江顶管由于施工作业面较小,江边堆填荷载较大,影响江堤稳定性,提前预测江堤位移对安全施工具有重要意义。通过自适应噪声的完备集合经验模态分解方法(CEEMDAN),将非线性非稳定性的监测数据分解为趋势项和周期项,提出一种适合于江堤变形的智能预测模型(CTG)。模型针对趋势项采用多项式函数预测;针对周期项,采用结合粒子群优化算法和时间卷积网络−门控循环单元混合模型的PSO-TCN-GRU算法进行预测。将算法应用于段塘顶管施工项目,结果表明该智能算法优于其他经典的神经网络预测方法,具有一定的推广价值,可为同类工程变形预测提供参考。另外,建议进行监测数据预测时先进行数据分解和特征提取,有利于改善模型预测结果。

     

  • 图  1  TCN模型中的残差块

    图  2  TCN中的膨胀卷积

    图  3  GRU示意图

    图  4  TCN-GRU模型示意图

    图  5  CTG模型实施流程

    图  6  河堤附近堆放的顶管

    图  7  激光位移计坐标说明

    图  8  段塘顶管项目和激光位移计位置示意图

    图  9  顶管施工进程图

    图  10  激光位移计水平向监测数据

    图  11  激光位移计竖向监测数据

    图  12  水平位移分解结果

    图  13  竖向位移分解结果

    图  14  序列1—序列4多种模型预测结果

    图  15  多种模型的计算误差对比

    表  1  水平位移趋势项模型预测参数

    参数 a0 a1 a2 a3 a4 a5
    −9.34 1.89×10−3 −1.56×10−5 9.08×10−9 −1.52×10−12 0
    下载: 导出CSV

    表  2  各类模型预测误差

    模型预测1预测2预测3预测4
    本文0.00470.00830.00180.0079
    BP0.01210.02580.02020.0440
    GRU0.00990.01810.00730.0202
    LSTM0.01010.02010.00580.0237
    TCN-GRU0.01150.02250.00760.0402
    下载: 导出CSV
  • [1] 赵效祖. 基于多元线性回归分析模型的基坑形变监测研究[D]. 兰州: 兰州交通大学, 2020. (ZHAO X J. Research on foundation pit deformation monitoring based on multiple linear regression analysis model[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)

    ZHAO X J. Research on foundation pit deformation monitoring based on multiple linear regression analysis model[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [2] 杨 恒, 岳建平, 周钦坤. 利用SVM与ARIMA组合模型进行大坝变形预测[J]. 测绘通报, 2021(4): 74-78. (YANG H, YUE J P, ZHOU Q K. Dam deformation prediction using SVM and ARIMA combined model[J]. Bulletin of Surveying and Mapping, 2021(4): 74-78. (in Chinese)

    YANG H, YUE J P, ZHOU Q K. Dam deformation prediction using SVM and ARIMA combined model[J]. Bulletin of Surveying and Mapping, 2021(4): 74-78. (in Chinese)
    [3] 牛帅星, 李庶林, 刘胤池, 等. 基于小波变换的GASVM-ARMA模型在深基坑变形预测中的应用[J]. 土木与环境工程学报(中英文), 2023, 45(3): 16-23. (NIU S X, LI S L, LIU Y C, et al. Application of GASVM-ARMA model based on wavelet transform in deformation prediction of deep foundation pit[J]. Journal of Civil and Environmental Engineering, 2023, 45(3): 16-23. (in Chinese)

    NIU S X, LI S L, LIU Y C, et al. Application of GASVM-ARMA model based on wavelet transform in deformation prediction of deep foundation pit[J]. Journal of Civil and Environmental Engineering, 2023, 45(3): 16-23. (in Chinese)
    [4] 于 玲, 王晓光, 包龙生. 基于灰色理论的基坑桩顶水平位移预测[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(3): 459-465. (YU L, WANG X G, BAO L S. Study on prediction of foundation pit horizontal displacement of pile top based on grey theory[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(3): 459-465. (in Chinese)

    YU L, WANG X G, BAO L S. Study on prediction of foundation pit horizontal displacement of pile top based on grey theory[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(3): 459-465. (in Chinese)
    [5] 袁志明, 李沛鸿, 刘小生. 顾及邻近点的改进PSO-SVM模型在基坑沉降预测的应用研究[J]. 大地测量与地球动力学, 2021, 41(3): 313-318. (YUAN Z M, LI P H, LIU X S. Study on the application of improved PSO-SVM model considering neighbor-point in the settlement prediction of foundation pit[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 313-318. (in Chinese)

    YUAN Z M, LI P H, LIU X S. Study on the application of improved PSO-SVM model considering neighbor-point in the settlement prediction of foundation pit[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 313-318. (in Chinese)
    [6] 李 举. 基于改进灰狼算法优化LSSVM模型在变形监测中的应用[D]. 西安: 长安大学, 2020. (LI J. Optimization of LSSVM model based on improved gray wolf algorithm and its application in deformation monitoring[D]. Xi’an: Chang’an University, 2020. (in Chinese)

    LI J. Optimization of LSSVM model based on improved gray wolf algorithm and its application in deformation monitoring[D]. Xi’an: Chang’an University, 2020. (in Chinese)
    [7] 黄思岚, 杨 杰, 屈旭东. 基于NRS-RF的混凝土坝变形监测模型研究[J]. 人民长江, 2021, 52(2): 111-116. (HUANG S L, YANG J, QU X D. Research on deformation monitoring model of concrete dam based on NRS-RF[J]. Yangtze River, 2021, 52(2): 111-116. (in Chinese)

    HUANG S L, YANG J, QU X D. Research on deformation monitoring model of concrete dam based on NRS-RF[J]. Yangtze River, 2021, 52(2): 111-116. (in Chinese)
    [8] 陈诗怡, 杨 杰, 程 琳, 等. 基于Copula-RF的混凝土坝变形监测模型[J]. 三峡大学学报(自然科学版), 2020, 42(2): 18-23. (CHEN S Y, YANG J, CHEN L, et al. Concrete dam deformation monitoring model based on Copula-RF[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(2): 18-23. (in Chinese)

    CHEN S Y, YANG J, CHEN L, et al. Concrete dam deformation monitoring model based on Copula-RF[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(2): 18-23. (in Chinese)
    [9] 安惠伦. 基于PCA-SSA-XGBoost模型的拱坝应力预测研究[D]. 天津: 天津大学, 2021. (AN H L. Research on arch dam stress prediction based on PCA-SSA-XGBoost model[D]. Tianjin: Tianjin University, 2021. (in Chinese)

    AN H L. Research on arch dam stress prediction based on PCA-SSA-XGBoost model[D]. Tianjin: Tianjin University, 2021. (in Chinese)
    [10] 杨晨蕾, 包腾飞. 基于FCM-XGBoost的大坝变形预测模型[J]. 长江科学院院报, 2021, 38(8): 66-71. (YANG C L, BAO T F. Dam deformation prediction model based on FCM-XGBoost[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 66-71. (in Chinese) doi: 10.11988/ckyyb.20200508

    YANG C L, BAO T F. Dam deformation prediction model based on FCM-XGBoost[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 66-71. (in Chinese) doi: 10.11988/ckyyb.20200508
    [11] 郑海青, 赵越磊, 宗广昌, 等. 融合自注意力机制的Conv-LSTM边坡位移预测方法[J]. 金属矿山, 2022(11): 193-197. (ZHENG H Q, ZHAO Y L, ZONG G C et al. Prediction of slope displacement based on Conv-LSTM combined with self-attention mechanism[J]. Metal Mine, 2022(11): 193-197. (in Chinese)

    ZHENG H Q, ZHAO Y L, ZONG G C et al. Prediction of slope displacement based on Conv-LSTM combined with self-attention mechanism[J]. Metal Mine, 2022(11): 193-197. (in Chinese)
    [12] 张生杰, 谭 勇. 基于LSTM算法的基坑变形预测[J]. 隧道建设(中英文), 2022, 42(1): 113-120. (ZHANG S J, TAN Y. Deformation prediction of foundation pit based on long short-term memory algorithm[J]. Tunnel Construction, 2022, 42(1): 113-120. (in Chinese)

    ZHANG S J, TAN Y. Deformation prediction of foundation pit based on long short-term memory algorithm[J]. Tunnel Construction, 2022, 42(1): 113-120. (in Chinese)
    [13] 肖浩汉, 陈祖煜, 徐国鑫, 等. 基于GRU算法的盾构掘进参数预测——以成都地铁19号线为例[J]. 长江科学院院报, 2023, 40(1): 123-131. (XIAO H H, CHEN Z Y, XU G X, et al. Prediction of shield tunneling parameters based on GRU algorithm: a case study on Chengdu metro line 19[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 123-131. (in Chinese) doi: 10.11988/ckyyb.20210916

    XIAO H H, CHEN Z Y, XU G X, et al. Prediction of shield tunneling parameters based on GRU algorithm: a case study on Chengdu metro line 19[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 123-131. (in Chinese) doi: 10.11988/ckyyb.20210916
    [14] ZHANG, W G, LI H R, TANG L B, et al. Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks[J]. Acta Geotechnica, 2022, 17(4): 1367-1382. doi: 10.1007/s11440-022-01495-8
    [15] 岳振华, 沈 涛, 毛 曦, 等. 循环神经网络的地面沉降预测方法[J]. 测绘科学, 2020, 45(12): 145-152. (YUE Z H, SHEN T, MAO X. Study on prediction method of land subsidence based on recurrent neural network[J]. Science of Surveying and Mapping, 2020, 45(12): 145-152. (in Chinese)

    YUE Z H, SHEN T, MAO X. Study on prediction method of land subsidence based on recurrent neural network[J]. Science of Surveying and Mapping, 2020, 45(12): 145-152. (in Chinese)
    [16] 李洛宾, 龚晓南, 甘晓露, 等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020, 53(S1): 13-19. (LI L B, GONG X N, GAN X L, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 13-19. (in Chinese)

    LI L B, GONG X N, GAN X L, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 13-19. (in Chinese)
    [17] BAI S J, Kolter J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-03-04) [2024-06-20]. https://arxiv.org/abs/1803.01271.
    [18] HUANG D, HE J, SONG Y X, et al. Displacement prediction of the Muyubao landslide based on a GPS time-series analysis and temporal convolutional network model[J]. Remote Sensing, 2022, 14(11): 2656. doi: 10.3390/rs14112656
    [19] 罗德河, 郑东健. 大坝变形的小波分析与ARMA预测模型[J]. 水利水运工程学报, 2016(3): 70-75. (LUO D H, ZHENG D J. Wavelet analysis and ARMA prediction model for dam deformation[J]. Hydro-Science and Engineering, 2016(3): 70-75. (in Chinese)

    LUO D H, ZHENG D J. Wavelet analysis and ARMA prediction model for dam deformation[J]. Hydro-Science and Engineering, 2016(3): 70-75. (in Chinese)
    [20] 张健飞, 衡 琰. 基于VMD-PE-CNN的混凝土坝变形预测模型[J]. 水利水电技术(中英文), 2022, 53(11): 100-109. (ZHANG J F, HENG Y. VMD-PE-CNN-based deformation prediction model of concrete dam[J]. Water Resources and Hydropower Engineering, 2022, 53(11): 100-109. (in Chinese)

    ZHANG J F, HENG Y. VMD-PE-CNN-based deformation prediction model of concrete dam[J]. Water Resources and Hydropower Engineering, 2022, 53(11): 100-109. (in Chinese)
    [21] 杜建广, 沈 尤, 常旭辉. 基于EMD方法的组合预测模型在建筑物基坑沉降监测中的应用[J]. 北京测绘, 2022, 36(6): 692-697. (DU J G, SHEN Y, CHANG X H. Application of combined prediction model based on EMD method in building foundation pit settlement monitoring[J]. Beijing Surveying and Mapping, 2022, 36(6): 692-697. (in Chinese)

    DU J G, SHEN Y, CHANG X H. Application of combined prediction model based on EMD method in building foundation pit settlement monitoring[J]. Beijing Surveying and Mapping, 2022, 36(6): 692-697. (in Chinese)
    [22] 马佳佳, 苏怀智, 王颖慧. 基于EEMD-LSTM-MLR的大坝变形组合预测模型[J]. 长江科学院院报, 2021, 38(5): 47-54. (MA J J, SU H Z, WANG Y H. Combinatorial prediction model for dam deformation based on EEMD-LSTM-MLR[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 47-54. (in Chinese) doi: 10.11988/ckyyb.20200705

    MA J J, SU H Z, WANG Y H. Combinatorial prediction model for dam deformation based on EEMD-LSTM-MLR[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 47-54. (in Chinese) doi: 10.11988/ckyyb.20200705
    [23] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011: 4144-4147.
    [24] CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[EB/OL]. (2014-09-03)[2024-06-20]. https://arxiv.org/abs/1409.1259.
    [25] CHUNG J Y, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2024-06-20]. https://arxiv.org/abs/1412.3555.
    [26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-12-31
  • 录用日期:  2025-03-06
  • 刊出日期:  2025-10-10

目录

    /

    返回文章
    返回