Development and application of multifunctional exploration platform on land and sea
-
摘要: 沿海勘察过程中可能遇到既有构筑物、浅滩等特殊情况,往往导致作业风险大、作业成本高、工作难开展。针对该难题研发海陆多功能勘探平台,实现海陆全地形行走、支腿遥控升降、作业面智能调平、同步多功能勘探等功能,实现提高工作效率、降低作业风险、减少成本投入、规范作业流程等目的。Abstract: In the process of coastal survey, some special situations such as existing structures and shoals may be encountered, which often lead to high operational risk, high operational cost, and difficult work. To solve this problem, a multi-functional exploration platform on land and sea has been developed. The exploration platform can realize the functions of all-terrain walking on land and sea, remote lifting of legs, intelligent leveling of operation surface, synchronous multi-functional exploration, etc., to improve work efficiency, reduce operational risks, reduce cost input, and standardize operation processes.
-
表 1 海陆多功能勘探平台应用场景
序号 环境条件 参数 1 绝对大气压 0.1 MPa 2 环境温度 45 ℃ 3 作业工况风速 6级 4 作业水深 3 m以浅 5 有义波高 不大于2 m 6 滩涂类型 泥质、砂质 表 2 海陆多功能勘探平台主要参数
序号 参数类型 参数 1 甲板长/m 12.00 2 甲板宽/m 5.50 3 型深/m 2.00 4 设计吃水/m 1.40 5 支腿内径/mm 299 6 支腿长度/m 12.00 7 平台总长度/m 13.50 8 平台总宽度/m 7.86 9 履带板宽/m 1.7 10 载重量/t 6.0 11 排水量/t 57.1 表 3 轮式车和履带车的比较
序号 性能类别 轮式车 履带车 1 机动性 具备快速行进、转向灵活等优越的机动能力;如果遇到泥泞或雪地等复杂路面,机动性受影响 履带与地面接触面积较大,摩擦力更强,传动更平稳 2 耐磨性 轮胎和制动系统等易磨损部件的寿命较短,需要定期更换 相对于轮式机械,在复杂地形条件下,履带的耐磨损性更强 3 通过性 适用于在平坦路面上行驶,无法跨越大的高低差,通过性相对较差 采用履带行走可以在较为复杂的地形中运动,通过性更好 4 载重能力 支撑面积较小,荷载能力相对较小,不适合用于运输较重的物品 采用履带式底盘,支撑面积更大,承载能力比轮式底盘更强 5 适用场景 平坦、开阔、不需要经常行驶在恶劣路况下的场景,如城市道路、公路等 需要经常在恶劣路况下行驶或需要承载大重量的场景 表 4 船舶螺旋桨的类型和特点
序号 类型 特点 优缺点 应用范围 1 固定螺旋桨 螺旋桨叶片的倾斜角度和
旋转方向固定不适应多场景需求,限制了应用
范围结构简单、成本较低,广泛用于低速船舶 2 可调螺旋桨 螺旋桨叶片的倾斜角度和
旋转方向可调节机械结构相对复杂,成本较高 适用于船舶需求不同推进力和
速度的情况3 带导流罩的螺旋桨 进入导流罩的水流速度高于螺旋浆外的水流速度,产生的压力梯度增加了螺旋桨的推力 减少噪声和震动,通过减少进入水流的局部压力差,减少了空泡和
空泡剥蚀效应的发生适用于除了高速船外几乎
所有的船舶4 水喷推螺旋桨 通过液压或电子技术将高速水流喷射出螺旋桨叶片以产生推进力 结构简单、高速和灵活匀速行驶,维护费用相对较高 广泛应用于各种高速船舶和
水上运动器材中5 电动船用螺旋桨 电动船用螺旋桨的驱动不需要齿轮箱、离合器、螺旋桨轴和舵 船舶的设计和建造相对简单 在破冰船、供应船、远洋客轮、油轮、渡轮和具备DP系统的
船舶所采用 -
[1] 胡建平. 近海工程船载式勘探平台系统创新与应用[J]. 中国港湾建设,2014(4):1-5. (HU J P. Innovation and application of offshore engineering ship-borne exploration platform system[J]. China Harbour Engineering,2014(4):1-5. (in Chinese) doi: 10.7640/zggwjs201404001HU J P. Innovation and application of offshore engineering ship-borne exploration platform system[J]. China Harbour Engineering, 2014(4): 1-5. (in Chinese) doi: 10.7640/zggwjs201404001 [2] 钮建定, 胡建平. 自航式水上移动平台关键技术[J]. 中国港湾建设,2012(3):19-21. (NIU J D, HU J P. Key technology for self-propelled maritime moveable platform[J]. China Harbour Engineering,2012(3):19-21. (in Chinese) doi: 10.3969/j.issn.1003-3688.2012.03.006NIU J D, HU J P. Key technology for self-propelled maritime moveable platform[J]. China Harbour Engineering, 2012(3): 19-21. (in Chinese) doi: 10.3969/j.issn.1003-3688.2012.03.006 [3] 胡建平, 李庆庆. 海上船载式移动钻探平台创新及应用[J]. 钻探工程,2014,41(9):52-57. (HU J P, LI Q Q. Maritime shipborne mobile drilling platform innovation and application[J]. Drilling Engineering,2014,41(9):52-57. (in Chinese) doi: 10.3969/j.issn.1672-7428.2014.09.011HU J P, LI Q Q. Maritime shipborne mobile drilling platform innovation and application[J]. Drilling Engineering, 2014, 41(9): 52-57. (in Chinese) doi: 10.3969/j.issn.1672-7428.2014.09.011 [4] 罗 涛, 孔秋平, 罗承浩, 等. 浅海塔式海上勘探平台稳定性技术开发研究[J]. 价值工程,2022,41(21):112-114. (LUO T, KONG Q P, LUO C H, et al. Development and research on stability technology of shallow sea tower offshore exploration platform[J]. Value Engineering,2022,41(21):112-114. (in Chinese)LUO T, KONG Q P, LUO C H, et al. Development and research on stability technology of shallow sea tower offshore exploration platform[J]. Value Engineering, 2022, 41(21): 112-114. (in Chinese) [5] 钮建定, 李孝杰, 胡建平. 近海工程勘探平台创新设计及应用[J]. 中国港湾建设,2020,40(12):5-9. (NIU J D, LI X J, HU J P. Innovative design and application of offshore engineering exploration platform[J]. China Harbour Engineering,2020,40(12):5-9. (in Chinese)NIU J D, LI X J, HU J P. Innovative design and application of offshore engineering exploration platform[J]. China Harbour Engineering, 2020, 40(12): 5-9. (in Chinese) [6] 丁加宏, 周 永. 浅析海上几种工程勘探平台的应用[J]. 西部探矿工程, 2014, 26(6): 61-62, 66. (DING J H, ZHOU Y. Analysis on the application of several offshore engineering exploration platforms[J]. West-China Exploration Engineering, 2014, 26(6): 61-62, 66. (in Chinese)DING J H, ZHOU Y. Analysis on the application of several offshore engineering exploration platforms[J]. West-China Exploration Engineering, 2014, 26(6): 61-62, 66. (in Chinese) [7] 陈师逊, 杨 芳. 海上工程平台的设计与应用分析[J]. 探矿工程(岩土钻掘工程),2014,41(4):46-50. (CHEN S X, YANG F. Design and application of the offshore engineering platform[J]. Drilling Engineering,2014,41(4):46-50. (in Chinese)CHEN S X, YANG F. Design and application of the offshore engineering platform[J]. Drilling Engineering, 2014, 41(4): 46-50. (in Chinese) [8] 胡建平, 李孝杰. 近海港口工程勘探平台的创新设计[J]. 港口科技,2016(12):12-15,42. (HU J P, LI X J. Innovative design of offshore port engineering exploration platform[J]. Port Science & Technology,2016(12):12-15,42. (in Chinese) doi: 10.3969/j.issn.1673-6826.2016.12.003HU J P, LI X J. Innovative design of offshore port engineering exploration platform[J]. Port Science & Technology, 2016(12): 12-15,42. (in Chinese) doi: 10.3969/j.issn.1673-6826.2016.12.003 [9] 林 鸣. 港珠澳大桥岛隧工程精细化勘察组织与实施[J]. 水运工程,2015(2):36-43. (LIN M. Organization and implementation of refined soil investigation in island-tunnel project of HZMB[J]. Port & Waterway Engineering,2015(2):36-43. (in Chinese)LIN M. Organization and implementation of refined soil investigation in island-tunnel project of HZMB[J]. Port & Waterway Engineering, 2015(2): 36-43. (in Chinese) [10] 宋宝杰, 王鲁朝, 栾东平, 等. 多功能地质勘察平台关键结构设计与应用[J]. 探矿工程(岩土钻掘工程),2017,44(11):46-49,59. (SONG B J, WANG L C, LUAN D P, et al. Design and application of the key structures of multi-function geological survey platform[J]. Drilling Engineering,2017,44(11):46-49,59. (in Chinese)SONG B J, WANG L C, LUAN D P, et al. Design and application of the key structures of multi-function geological survey platform[J]. Drilling Engineering, 2017, 44(11): 46-49,59. (in Chinese) [11] 张 强. 支腿式平台在海上风电勘探中的应用[J]. 福建建设科技,2019(5):52-53. (ZHANG Q. Application of outrigger platform in offshore wind power exploration[J]. Fujian Construction Science & Technology,2019(5):52-53. (in Chinese)ZHANG Q. Application of outrigger platform in offshore wind power exploration[J]. Fujian Construction Science & Technology, 2019(5): 52-53. (in Chinese) [12] 李煌灵. 自升式海上勘探平台设计要点研究[J]. 中国新技术新产品, 2020(13): 102-103. (LI H L. Research on design key points of jack-up offshore exploration platform[J]. New Technology & New Products of China, 2020(13): 102-103. (in Chinese)LI H L. Research on design key points of jack-up offshore exploration platform[J]. New Technology & New Products of China, 2020(13): 102-103. (in Chinese) [13] 许启云, 牛美峰. 海上风电勘探装备研发与应用[J]. 钻探工程,2021,48(9):107-110. (XU Q Y, NIU M F. Development and application of offshore wind power exploration equipment[J]. Drilling Engineering,2021,48(9):107-110. (in Chinese) doi: 10.12143/j.ztgc.2021.09.013XU Q Y, NIU M F. Development and application of offshore wind power exploration equipment[J]. Drilling Engineering, 2021, 48(9): 107-110. (in Chinese) doi: 10.12143/j.ztgc.2021.09.013 [14] 李 力, 曹 拓, 陈向东. 海底摆臂型履带式移动平台的越障性能[J]. 中南大学学报(自然科学版),2015,46(7):2481-2486. (LI L, CAO T, CHEN X D. Obstacle surmounting performance of a swing-arm-type tracked seabed walking platform[J]. Journal of Central South University (Science and Technology),2015,46(7):2481-2486. (in Chinese)LI L, CAO T, CHEN X D. Obstacle surmounting performance of a swing-arm-type tracked seabed walking platform[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2481-2486. (in Chinese) [15] 胡建平, 李孝杰. 岩土工程水陆两栖勘察平台设计[J]. 岩土工程技术,2019,33(1):1-5,13. (HU J P, LI X J. Design of geotechnical amphibious survey platform[J]. Geotechnical Engineering Technique,2019,33(1):1-5,13. (in Chinese) doi: 10.3969/j.issn.1007-2993.2019.01.001HU J P, LI X J. Design of geotechnical amphibious survey platform[J]. Geotechnical Engineering Technique, 2019, 33(1): 1-5,13. (in Chinese) doi: 10.3969/j.issn.1007-2993.2019.01.001 [16] 吴立柱, 华晓涛, 吴中正, 等. 海上履带式行走施工平台试验机关键技术[J]. 中国港湾建设,2019,39(3):38-41,56. (WU L Z, HUA X T, WU Z Z, et al. Key technology of experimental tracked platform for offshore construction[J]. China Harbour Engineering,2019,39(3):38-41,56. (in Chinese) doi: 10.7640/zggwjs201903009WU L Z, HUA X T, WU Z Z, et al. Key technology of experimental tracked platform for offshore construction[J]. China Harbour Engineering, 2019, 39(3): 38-41,56. (in Chinese) doi: 10.7640/zggwjs201903009 -