Shear characteristics of jute fiber-reinforced sandy soil
-
摘要: 为研究生态纤维对砂土的加固机理及效果,以黄麻纤维加筋砂土为研究对象,通过室内直剪试验与离散元数值模拟相结合的方法,分析不同的黄麻纤维含量对加筋砂土抗剪性能的影响。研究结果表明:黄麻纤维掺入砂土中能有效提高砂土的抗剪强度,砂土的黏聚力和内摩擦角均随着纤维掺量的增加先增大后减小;当纤维含量为0.4%时,黏聚力的增长最为显著,达到20.8 kPa;在纤维含量为 0.2%时,内摩擦角增幅最大,其值为14.69%。研究成果可为生态纤维在砂土填筑工程中的应用提供参考依据。Abstract: To study the reinforcement mechanism and effect of ecological fibers on sandy soil, jute fiber-reinforced sandy soil was taken as the research object. Through a combination of indoor direct shear tests and discrete element numerical simulations, the influence of different jute fiber contents on the shear performance of reinforced sandy soil was analyzed. The research results show that the addition of jute fiber to sand can effectively improve the shear strength of sand. The overall trend is that the cohesion and internal friction angle of sand first increase and then decrease with the increase of fiber content. When the fiber content is 0.4%, the increase in cohesion is the most significant, reaching 20.8 kPa. When the fiber content is 0.2%, the increase in internal friction angle is the largest, with a value of 14.69%. This study provides a reference for the application of ecological fibers in sandy soil filling projects.
-
表 1 砂土的物理力学指标
密度
/(kg·m−3)含水率
/%黏聚力
/kPa内摩擦角
/(°)不均匀
系数曲率
系数孔隙率 1600 0.23 0 32 2.91 1.12 0.33 表 2 黄麻纤维的物理力学指标
密度
/(kg·m−3)直径
/μm比重 抗拉强度
/MPa弹性模量
/GPa伸长率
/%1400 70 1.211 800 1.2 2.1 表 3 砂土与黄麻纤维物理力学指标
材料 密度
/(kg·m−3)刚度比 有效模
量/MPa摩擦
系数抗拉强
度/MPa阻尼 加载速率
/(m·s−1)初始孔
隙率砂土 2700 1.5 2000 0.4 0.7 0.01 0.16 纤维 1400 1.0 1200 0.7 800 -
[1] 贾卓龙, 梁哲瑞, 晏长根, 等. 聚丙烯纤维加筋黄土抗渗性能试验研究[J/OL]. 工程地质学报, 2025: 1-11 [2025-04-14]. https://doi.org/10.13544/j.cnki.jeg.2023-0098. (JIA Z L, LIANG Z R, YAN C G, et al. Experimental study on anti-seepage of polypropylene fiber-reinforced loess[J/OL]. Journal of Engineering Geology, 2025: 1-11 [2025-04-14]. https://doi.org/10.13544/j.cnki.jeg.2023-0098.(in Chinese)JIA Z L, LIANG Z R, YAN C G, et al. Experimental study on anti-seepage of polypropylene fiber-reinforced loess[J/OL]. Journal of Engineering Geology, 2025: 1-11 [2025-04-14]. https://doi.org/10.13544/j.cnki.jeg.2023-0098.(in Chinese) [2] 李丽华, 万 畅, 刘永莉, 等. 玻璃纤维加筋砂土剪切强度特性研究[J]. 武汉大学学报(工学版),2017,50(1):102-106. (LI L H, WAN C, LIU Y L, et al. Shear strength characteristics of glass fiber reinforced sandy soil[J]. Engineering Journal of Wuhan University,2017,50(1):102-106. (in Chinese)LI L H, WAN C, LIU Y L, et al. Shear strength characteristics of glass fiber reinforced sandy soil[J]. Engineering Journal of Wuhan University, 2017, 50(1): 102-106. (in Chinese) [3] 李丽华, 范城彬, 白玉霞, 等. 稻秸秆加筋土力学特性与植生性能试验研究[J]. 土木工程学报,2023,56(S1):64-74. (LI L H, FAN C B, BAI Y X, et al. Mechanical properties and plant-growing of rice straw reinforced soil[J]. China Civil Engineering Journal,2023,56(S1):64-74. (in Chinese)LI L H, FAN C B, BAI Y X, et al. Mechanical properties and plant-growing of rice straw reinforced soil[J]. China Civil Engineering Journal, 2023, 56(S1): 64-74. (in Chinese) [4] 吕津宜, 陈济丁, 孔亚平, 等. 椰丝纤维长度对土体抗剪强度和抗压强度的影响[J]. 草原与草坪,2024,44(1):158-167. (LÜ J Y, CHEN J D, KONG Y P, et al. Effect of coir fiber length on shear strength and compressive strength of soil[J]. Grassland and Turf,2024,44(1):158-167. (in Chinese)LÜ J Y, CHEN J D, KONG Y P, et al. Effect of coir fiber length on shear strength and compressive strength of soil[J]. Grassland and Turf, 2024, 44(1): 158-167. (in Chinese) [5] 蒋希雁, 刘嘉璐, 李明洋, 等. 棕榈纤维加筋土抗剪强度特性及机理研究[J]. 力学季刊,2024,45(1):274-285. (JIANG X Y, LIU J L, LI M Y, et al. Study on the shear strength characteristics and reinforcement mechanism of palm fiber reinforced soil[J]. Chinese Quarterly of Mechanics,2024,45(1):274-285. (in Chinese)JIANG X Y, LIU J L, LI M Y, et al. Study on the shear strength characteristics and reinforcement mechanism of palm fiber reinforced soil[J]. Chinese Quarterly of Mechanics, 2024, 45(1): 274-285. (in Chinese) [6] 任 浩, 张紫怡, 党 芳, 等. 聚丙烯纤维加固膨胀土边坡稳定性分析[J]. 岩土工程技术,2024,38(1):90-94. (REN H, ZHANG Z Y, DANG F, et al. Slope stability analysis of polypropylene fiber reinforced expansive soil[J]. Geotechnical Engineering Technique,2024,38(1):90-94. (in Chinese) doi: 10.3969/j.issn.1007-2993.2024.01.016REN H, ZHANG Z Y, DANG F, et al. Slope stability analysis of polypropylene fiber reinforced expansive soil[J]. Geotechnical Engineering Technique, 2024, 38(1): 90-94. (in Chinese) doi: 10.3969/j.issn.1007-2993.2024.01.016 [7] 李 骞, 罗 璟, 裴向军, 等. 秸秆纤维加筋固化土物理力学特性与抗冻融性能试验研究[J]. 长江科学院院报,2024,41(1):128-135. (LI Q, LUO J, PEI X J, et al. Experimental study on physical and mechanical properties and freeze-thaw resistance of straw fiber reinforced solidified soil[J]. Journal of Changjiang River Scientific Research Institute,2024,41(1):128-135. (in Chinese)LI Q, LUO J, PEI X J, et al. Experimental study on physical and mechanical properties and freeze-thaw resistance of straw fiber reinforced solidified soil[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(1): 128-135. (in Chinese) [8] 孔玉侠, 沈飞凡, 王慧娟. 聚丙烯纤维加筋砂土的剪胀特性[J]. 岩土工程学报,2018,40(12):2249-2256. (KONG Y X, SHEN F F, WANG H J. Stress-dilatancy properties for fiber-reinforced sand[J]. Chinese Journal of Geotechnical Engineering,2018,40(12):2249-2256. (in Chinese) doi: 10.11779/CJGE201812012KONG Y X, SHEN F F, WANG H J. Stress-dilatancy properties for fiber-reinforced sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2249-2256. (in Chinese) doi: 10.11779/CJGE201812012 [9] 孙 舒, 袁学锋, 李福林, 等. 聚丙烯纤维土受力性能试验研究[J]. 长江科学院院报,2016,33(2):71-73,79. (SUN S, YUAN X F, LI F L, et al. Mechanical properties of polypropylene fibre-reinforced soil[J]. Journal of Changjiang River Scientific Research Institute,2016,33(2):71-73,79. (in Chinese) doi: 10.11988/ckyyb.20140843SUN S, YUAN X F, LI F L, et al. Mechanical properties of polypropylene fibre-reinforced soil[J]. Journal of Changjiang River Scientific Research Institute, 2016, 33(2): 71-73,79. (in Chinese) doi: 10.11988/ckyyb.20140843 [10] 周林禄, 苏 雷, 凌贤长, 等. 纤维加筋砂土抗液化试验与数值模拟[J]. 工程地质学报,2021,29(5):1567-1576. (ZHOU L L, SU L, LING X Z, et al. Experimental and numerical modeling on liquefaction resistance of fiber reinforced sand[J]. Journal of Engineering Geology,2021,29(5):1567-1576. (in Chinese)ZHOU L L, SU L, LING X Z, et al. Experimental and numerical modeling on liquefaction resistance of fiber reinforced sand[J]. Journal of Engineering Geology, 2021, 29(5): 1567-1576. (in Chinese) [11] 郑俊杰, 宋 杨, 吴超传, 等. 玄武岩纤维加筋微生物固化砂力学特性试验[J]. 华中科技大学学报(自然科学版),2019,47(12):73-78. (ZHENG J J, SONG Y, WU C C, et al. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2019,47(12):73-78. (in Chinese)ZHENG J J, SONG Y, WU C C, et al. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12): 73-78. (in Chinese) [12] YETIMOGLU T, SALBAS O. A study on shear strength of sands reinforced with randomly distributed discrete fibers[J]. Geotextiles and Geomembranes,2003,21(2):103-110. doi: 10.1016/S0266-1144(03)00003-7 [13] LOVISA J, SHUKLA S K, SIVAKUGAN N. Shear strength of randomly distributed moist fibre-reinforced sand[J]. Geosynthetics International,2010,17(2):100-106. doi: 10.1680/gein.2010.17.2.100 [14] MA K, LIU J, JIANG C H, et al. Compressive and tensile strength of polymer-based fiber composite sand[J]. Journal of Central South University,2022,29(2):528-545. doi: 10.1007/s11771-022-4909-9 [15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique,1979,29(1):47-65. [16] 郭 鸿, 陈 茜. 颗粒级配对砂土剪切特性的影响及细观机理研究[J]. 人民长江,2017,48(11):86-91. (GUO H, CHEN X. Effect of particle gradation on shear prosperities of sandy soil and its microscopic mechanism[J]. Yangtze River,2017,48(11):86-91. (in Chinese)GUO H, CHEN X. Effect of particle gradation on shear prosperities of sandy soil and its microscopic mechanism[J]. Yangtze River, 2017, 48(11): 86-91. (in Chinese) [17] 李 爽, 刘 洋, 吴可嘉. 砂土直剪试验离散元数值模拟与细观变形机理研究[J]. 长江科学院院报,2017,34(4):104-110,116. (LI S, LIU Y, WU K J. Exploring mesoscopic deformation mechanism of sand in direct shear test by numerical simulation using discrete element method[J]. Journal of Changjiang River Scientific Research Institute,2017,34(4):104-110,116. (in Chinese)LI S, LIU Y, WU K J. Exploring mesoscopic deformation mechanism of sand in direct shear test by numerical simulation using discrete element method[J]. Journal of Changjiang River Scientific Research Institute, 2017, 34(4): 104-110,116. (in Chinese) [18] 蒋明镜, 王富周, 朱合华. 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学,2010,31(1):253-257,298. (JIANG M J, WANG F Z, ZHU H H. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. Rock and Soil Mechanics,2010,31(1):253-257,298. (in Chinese)JIANG M J, WANG F Z, ZHU H H. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 253-257,298. (in Chinese) [19] 杨 升, 李晓庆. 基于PFC3D的砂土直剪模拟及宏细观分析[J]. 计算力学学报,2019,36(6):777-783. (YANG S, LI X Q. Shear simulation and macro meso analysis of sand based on PFC3D[J]. Chinese Journal of Computational Mechanics,2019,36(6):777-783. (in Chinese)YANG S, LI X Q. Shear simulation and macro meso analysis of sand based on PFC3D[J]. Chinese Journal of Computational Mechanics, 2019, 36(6): 777-783. (in Chinese) [20] THORNTON C, ZHANG L. Numerical simulations of the direct shear test[J]. Chemical Engineering & Technology,2003,26(2):153-156. [21] LIU S H, SUN D A, MATSUOKA H. On the interface friction in direct shear test[J]. Computers and Geotechnics,2005,32(5):317-325. doi: 10.1016/j.compgeo.2005.05.002 [22] 郭 鸿. 复杂颗粒流力学特征仿真模拟[M]. 北京: 科学出版社, 2019. (GUO H. Simulation of complex particle flow dynamics characteristics[M]. Beijing: Science Press, 2019. (in Chinese)GUO H. Simulation of complex particle flow dynamics characteristics[M]. Beijing: Science Press, 2019. (in Chinese) [23] 彭 梁, 彭学先. 玻璃纤维加筋土细观损伤演化及机理研究[J]. 公路工程,2018,43(5):237-242. (PENG L, PENG X X. Study on Meso-damage evolution and mechanism of glass fiber reinforced soil[J]. Highway Engineering,2018,43(5):237-242. (in Chinese)PENG L, PENG X X. Study on Meso-damage evolution and mechanism of glass fiber reinforced soil[J]. Highway Engineering, 2018, 43(5): 237-242. (in Chinese) [24] 孙其诚, 辛海丽, 刘建国, 等. 颗粒体系中的骨架及力链网络[J]. 岩土力学,2009,30(S1):83-87. (SUN Q C, XIN H L, LIU J G, et al. Skeleton and force chain network in static granular material[J]. Rock and Soil Mechanics,2009,30(S1):83-87. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.z1.018SUN Q C, XIN H L, LIU J G, et al. Skeleton and force chain network in static granular material[J]. Rock and Soil Mechanics, 2009, 30(S1): 83-87. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.z1.018 [25] 孙其诚, 王光谦. 颗粒流动力学及其离散模型评述[J]. 力学进展,2008,38(1):87-100. (SUN Q C, WANG G Q. Review on granular flow dynamics and its discrete element method[J]. Advances in Mechanics,2008,38(1):87-100. (in Chinese) doi: 10.6052/1000-0992-2008-1-J2006-180SUN Q C, WANG G Q. Review on granular flow dynamics and its discrete element method[J]. Advances in Mechanics, 2008, 38(1): 87-100. (in Chinese) doi: 10.6052/1000-0992-2008-1-J2006-180 -