留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

朱湖地区泥页岩地层地热钻井稳壁防塌技术研究

刘洲辉

刘洲辉. 朱湖地区泥页岩地层地热钻井稳壁防塌技术研究[J]. 岩土工程技术, 2025, 39(6): 823-829. doi: 10.20265/j.cnki.issn.1007-2993.2024-0420
引用本文: 刘洲辉. 朱湖地区泥页岩地层地热钻井稳壁防塌技术研究[J]. 岩土工程技术, 2025, 39(6): 823-829. doi: 10.20265/j.cnki.issn.1007-2993.2024-0420
Liu Zhouhui. Wall stabilization and collapse prevention technology for geothermal drilling in shale formations in Zhuhu area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 823-829. doi: 10.20265/j.cnki.issn.1007-2993.2024-0420
Citation: Liu Zhouhui. Wall stabilization and collapse prevention technology for geothermal drilling in shale formations in Zhuhu area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 823-829. doi: 10.20265/j.cnki.issn.1007-2993.2024-0420

朱湖地区泥页岩地层地热钻井稳壁防塌技术研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0420
详细信息
    作者简介:

    刘洲辉,男,1990年生,大学本科,工程师。研究方向:岩心钻探施工设计和施工技术管理。E-mail:liuan19780319@163.com

  • 中图分类号: P314;TE24

Wall stabilization and collapse prevention technology for geothermal drilling in shale formations in Zhuhu area

  • 摘要: 朱湖地区某地热工程钻井至泥页岩地层时,由于钻井液与地层的活度差较大,钻井液无法有效阻止压力传递且封堵性差,导致井壁发生较为严重的坍塌。为解决这一问题,研制出一种防塌钻井液,该钻井液由盐水+4%膨润土+1%PAM+2%STQ+1% SPKY+1%多元封堵剂(2%浓度ZT-1+3%浓度GX-1+2%浓度NQ)+1%胺基聚醇组成,流变性合理,能够有效抑制泥页岩的水化膨胀分散性,可以有效阻止上游压力传递给下游,封堵性能良好,同时还具备很好的润滑工作性能和抗钻屑污染能力。现场应用表明,使用该防塌钻井液后未再发生严重垮塌失稳现象,起到了较好的稳壁防塌效果。

     

  • 图  1  朱湖地热钻探地质构造示意

    图  2  压力传递试验原理

    图  3  不同封堵剂钻井液黏度、HTHP 滤失量对比

    图  4  不同抑制剂下泥页岩滚动回收、膨胀性对比

    图  5  泥页岩滚动回收率、膨胀性、API滤失量与胺基聚醇浓度关系

    图  6  API滤失量随钻屑量变化规律

    表  1  防塌钻井液体系添加剂掺量

    配方编号 膨润土/% PAM/% STQ/% SPKY/% 多元封堵剂/% 抑制剂/% 黏度/(mPa∙s) API滤失量/mL
    1 3 1 2 1 1 1 30 5.4
    2 3 2 2 2 1 1 32 3.9
    3 3 1 3 1 1 1 44 6.0
    4 3 2 3 2 1 1 41 5.2
    5 4 1 2 1 1 1 33 2.8
    6 4 2 2 2 1 1 45 7.0
    7 4 1 3 1 1 1 44 3.7
    8 4 2 3 2 1 1 52 4.4
    下载: 导出CSV

    表  2  两种钻井液性能对比

    性能 指标 单位 现场钻井液 优化防塌钻井液
    流变性 黏度 mPa·s 30 33
    流变性 FLAPI mL 4.5 2.8
    抑制性 滚动回收率 % 65.5 92.3
    抑制性 5 h膨胀率 % 3.63 2.0
    封堵性 FLHTHP mL 7.5 5.0
    封堵性 后端压力 MPa 2.8 0.7
    润滑性 润滑系数 0.0850 0.0890
    润滑性 粘滞系数 0.0578 0.0715
    下载: 导出CSV
  • [1] 王瑞鹏, 赵伟锋, 杨舒为, 等. 综合物探在冀东北部山区地热资源勘查中的应用[J]. 矿产勘查, 2024, 15(5): 818-826. (WANG R P, ZHAO W F, YANG S W, et al. Application of comprehensive geophysical exploration in geothermal resources exploration in northern mountainous area of eastern Hebei Province[J]. Mineral Exploration, 2024, 15(5): 818-826. (in Chinese)

    WANG R P, ZHAO W F, YANG S W, et al. Application of comprehensive geophysical exploration in geothermal resources exploration in northern mountainous area of eastern Hebei Province[J]. Mineral Exploration, 2024, 15(5): 818-826. (in Chinese)
    [2] 张召峰. 肯尼亚高温地热钻井技术在中国干热岩资源开发中的应用前景[J]. 油气藏评价与开发, 2022, 12(6): 833-842. (ZHANG Z F. Application prospects of Kenya's high-temperature geothermal resources drilling technology in China's dry hot rock resources[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 833-842. (in Chinese)

    ZHANG Z F. Application prospects of Kenya's high-temperature geothermal resources drilling technology in China's dry hot rock resources[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 833-842. (in Chinese)
    [3] 钱开铸, 林 叶, 常铁森. 北京国子监JR-181地热井施工工艺及开发评价[J]. 岩土工程技术, 2017, 31(1): 45-48. (QIAN K Z, LIN Y, CHANG T S. Drilling technology and exploration evaluation in the geothermal well construction in the Guozijian Region, Beijing[J]. Geotechnical Engineering Technique, 2017, 31(1): 45-48. (in Chinese) doi: 10.3969/j.issn.1007-2993.2017.01.011

    QIAN K Z, LIN Y, CHANG T S. Drilling technology and exploration evaluation in the geothermal well construction in the Guozijian Region, Beijing[J]. Geotechnical Engineering Technique, 2017, 31(1): 45-48. (in Chinese) doi: 10.3969/j.issn.1007-2993.2017.01.011
    [4] 吴晓红, 李云峰, 余小龙, 等. 南堡沙河街组硬脆性泥页岩地层漏失压力预测方法[J]. 科学技术与工程, 2024, 24(1): 189-194. (WU X H, LI Y F, YU X L, et al. Prediction method of loss pressure of hard brittle shale in Shahejie formation, Nanpu[J]. Science Technology and Engineering, 2024, 24(1): 189-194. (in Chinese) doi: 10.12404/j.issn.1671-1815.2301652

    WU X H, LI Y F, YU X L, et al. Prediction method of loss pressure of hard brittle shale in Shahejie formation, Nanpu[J]. Science Technology and Engineering, 2024, 24(1): 189-194. (in Chinese) doi: 10.12404/j.issn.1671-1815.2301652
    [5] 付毓伟, 罗 兵, 叶政蔚, 等. 水基钻井液用泥页岩抑制剂研究探讨[J]. 石化技术, 2023, 30(11): 177-179. (FU Y W, LUO B, YE Z W, et al. Research and discussion on shale inhibitors for water-based drilling fluids[J]. Petrochemical Industry Technology, 2023, 30(11): 177-179. (in Chinese)

    FU Y W, LUO B, YE Z W, et al. Research and discussion on shale inhibitors for water-based drilling fluids[J]. Petrochemical Industry Technology, 2023, 30(11): 177-179. (in Chinese)
    [6] 王苏南, 狄明利, 马积贺, 等. 南海东部某油田古近系复杂煤层防塌钻井液技术研究[J]. 能源化工, 2023, 44(4): 53-57. (WANG S N, DI M L, MA J H, et al. Research on anti-collapse drilling fluid technology of Paleogene complex coal seam in an oilfield of the eastern South China Sea[J]. Energy Chemical Industry, 2023, 44(4): 53-57. (in Chinese) doi: 10.3969/j.issn.1006-7906.2023.04.011

    WANG S N, DI M L, MA J H, et al. Research on anti-collapse drilling fluid technology of Paleogene complex coal seam in an oilfield of the eastern South China Sea[J]. Energy Chemical Industry, 2023, 44(4): 53-57. (in Chinese) doi: 10.3969/j.issn.1006-7906.2023.04.011
    [7] 孙 舜. 钻井完井工程中的井眼壁稳定性与防塌措施研究[J]. 石化技术, 2024, 31(1): 187-189. (SUN S. Research on wellbore wall stability and anti collapse measures in drilling and completion engineering[J]. Petrochemical Industry Technology, 2024, 31(1): 187-189. (in Chinese)

    SUN S. Research on wellbore wall stability and anti collapse measures in drilling and completion engineering[J]. Petrochemical Industry Technology, 2024, 31(1): 187-189. (in Chinese)
    [8] 王国辉, 苏 乐, 赵燕博. 强封堵防塌型水基钻井液体系室内制备及其应用[J]. 当代化工, 2024, 53(5): 1162-1165,1169. (WANG G H, SU L, ZHAO Y B. Preparation and application of strong sealing and anti collapse water-based drilling fluid system[J]. Contemporary Chemical Industry, 2024, 53(5): 1162-1165,1169. (in Chinese) doi: 10.3969/j.issn.1671-0460.2024.05.032

    WANG G H, SU L, ZHAO Y B. Preparation and application of strong sealing and anti collapse water-based drilling fluid system[J]. Contemporary Chemical Industry, 2024, 53(5): 1162-1165,1169. (in Chinese) doi: 10.3969/j.issn.1671-0460.2024.05.032
    [9] 姚宾科, 刘长青, 李志勇, 等. 适用于浅层覆盖层的防塌减阻聚合物钻井液的试验研究及现场应用[J]. 工程勘察, 2018, 46(10): 25-29. (YAO B K, LIU C Q, LI Z Y, et al. Experimental study and field application of the anti-collapse and drag polymer drilling fluid applied to the shallow overburden[J]. Geotechnical Investigation & Surveying, 2018, 46(10): 25-29. (in Chinese)

    YAO B K, LIU C Q, LI Z Y, et al. Experimental study and field application of the anti-collapse and drag polymer drilling fluid applied to the shallow overburden[J]. Geotechnical Investigation & Surveying, 2018, 46(10): 25-29. (in Chinese)
    [10] 任小庆, 高小荣, 孙彩霞, 等. 抗高温泡沫钻井液体系评价研究[J]. 地质与勘探, 2021, 57(2): 423-429. (REN X Q, GAO X R, SUN C X, et al. Evaluation of high temperature restistant foam drilling fluid system[J]. Geology and Exploration, 2021, 57(2): 423-429. (in Chinese) doi: 10.12134/j.dzykt.2021.02.017

    REN X Q, GAO X R, SUN C X, et al. Evaluation of high temperature restistant foam drilling fluid system[J]. Geology and Exploration, 2021, 57(2): 423-429. (in Chinese) doi: 10.12134/j.dzykt.2021.02.017
    [11] 宋先知, 郭 勇, 向冬梅, 等. 呼图壁背斜水基钻井液井壁失稳机理多场耦合分析[J]. 新疆石油天然气, 2023, 19(4): 1-9. (SONG X Z, GUO Y, XIANG D M, et al. Multi-field coupling analysis of wellbore instability in Hutubi anticline while using water-based drilling fluid[J]. Xinjiang Oil & Gas, 2023, 19(4): 1-9. (in Chinese) doi: 10.12388/j.issn.1673-2677.2023.04.001

    SONG X Z, GUO Y, XIANG D M, et al. Multi-field coupling analysis of wellbore instability in Hutubi anticline while using water-based drilling fluid[J]. Xinjiang Oil & Gas, 2023, 19(4): 1-9. (in Chinese) doi: 10.12388/j.issn.1673-2677.2023.04.001
    [12] 邱春阳, 马 勇, 李 萍, 等. 聚胺复合盐润滑防塌钻井液在樊斜166大位移井的应用[J]. 天然气勘探与开发, 2024, 47(3): 63-69. (QIU C Y, MA Y, LI P, et al. Polyamine composite-salt drilling fluid with lubrication and anti-collapse performance and its application to extended-reach Fanxie-166 well[J]. Natural Gas Exploration and Development, 2024, 47(3): 63-69. (in Chinese) doi: 10.12055/gaskk.issn.1673-3177.2024.03.007

    QIU C Y, MA Y, LI P, et al. Polyamine composite-salt drilling fluid with lubrication and anti-collapse performance and its application to extended-reach Fanxie-166 well[J]. Natural Gas Exploration and Development, 2024, 47(3): 63-69. (in Chinese) doi: 10.12055/gaskk.issn.1673-3177.2024.03.007
    [13] XU X F, CHEN C L, ZHOU Y, et al. Study of the wellbore instability mechanism of shale in the Jidong oilfield under the action of fluid[J]. Energies, 2023, 16(7): 2989.
    [14] 邓 媛, 何世明, 邓祥华, 等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术, 2020, 48(1): 26-33. (DENG Y, HE S M, DENG X H, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. (in Chinese)

    DENG Y, HE S M, DENG X H, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. (in Chinese)
    [15] LI S B, LIANG K, WANG C H, et al. Study of wellbore instability and collapse mechanism for a layered continental shale oil horizontal well[J]. Energies, 2022, 15(13): 4538.
    [16] 崔红梅, 祝凤蕊, 尹 玲, 等. PAC-P(AM-BA)杂化高分子絮凝剂制备及絮凝效能评价[J]. 高校化学工程学报, 2024, 38(2): 286-293. (CUI H M, ZHU F R, YIN L, et al. Preparation and flocculation efficiency evaluation of a PAC-P(AM-BA)hybrid polymer flocculant[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(2): 286-293. (in Chinese) doi: 10.3969/j.issn.1003-9015.2024.02.013

    CUI H M, ZHU F R, YIN L, et al. Preparation and flocculation efficiency evaluation of a PAC-P(AM-BA)hybrid polymer flocculant[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(2): 286-293. (in Chinese) doi: 10.3969/j.issn.1003-9015.2024.02.013
    [17] WANG Q S, WANG W Y, ZHANG K J, et al. Molecular simulation of polyacrylamide types on flocculation performance in oily wastewater[J]. Chemical Physics Letters, 2025, 867: 142023.
    [18] LEOWATTANA W, LEOWATTANA P, LEOWATTANA T. Systemic treatment for advanced pancreatic cancer[J]. World Journal of Gastrointestinal Oncology, 2023, 15(10): 1691-1705.
    [19] 张 勤, 王清臣, 王伟良, 等. 钻井液用耐温抗盐共聚物增黏剂的制备及性能评价[C]//2023油气田勘探与开发国际会议论文集Ⅰ. 武汉: 中国地质大学(武汉), 西安石油大学, 陕西省石油学会, 2023: 269-276. (ZHANG Q, WANG Q C, WANG W L, et al. Preparation and performance evaluation of temperature and salt resistant copolymer as drilling fluid viscosifier[C]//Proceedings of 2023 International Conference on Oil and Gas Field Exploration and Development I. Wuhan: China University of Geosciences (Wuhan), Xi’an University of Petroleum, Shaanxi Petroleum Society, 2023: 269-276. (in Chinese)

    ZHANG Q, WANG Q C, WANG W L, et al. Preparation and performance evaluation of temperature and salt resistant copolymer as drilling fluid viscosifier[C]//Proceedings of 2023 International Conference on Oil and Gas Field Exploration and Development I. Wuhan: China University of Geosciences (Wuhan), Xi’an University of Petroleum, Shaanxi Petroleum Society, 2023: 269-276. (in Chinese)
    [20] 唐 雷, 乔东宇, 王新东, 等. 固井水泥浆共聚物类耐高温降失水剂的制备及其机理探究[J]. 石油化工, 2024, 53(7): 1012-1019. (TANG L, QIAO D Y, WANG X D, et al. Preparation and mechanism of high-temperature-resistant fluid loss additive of copolymer type for oil well cement[J]. Petrochemical Technology, 2024, 53(7): 1012-1019. (in Chinese) doi: 10.3969/j.issn.1000-8144.2024.07.015

    TANG L, QIAO D Y, WANG X D, et al. Preparation and mechanism of high-temperature-resistant fluid loss additive of copolymer type for oil well cement[J]. Petrochemical Technology, 2024, 53(7): 1012-1019. (in Chinese) doi: 10.3969/j.issn.1000-8144.2024.07.015
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-12
  • 修回日期:  2025-04-18
  • 录用日期:  2025-06-11
  • 网络出版日期:  2025-12-08
  • 刊出日期:  2025-12-08

目录

    /

    返回文章
    返回