留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CNN-LSTM-Attention模型的超大型船坞坞室基坑围护变形预测分析

闫瑞海

闫瑞海. 基于CNN-LSTM-Attention模型的超大型船坞坞室基坑围护变形预测分析[J]. 岩土工程技术, 2025, 39(6): 854-864. doi: 10.20265/j.cnki.issn.1007-2993.2024-0463
引用本文: 闫瑞海. 基于CNN-LSTM-Attention模型的超大型船坞坞室基坑围护变形预测分析[J]. 岩土工程技术, 2025, 39(6): 854-864. doi: 10.20265/j.cnki.issn.1007-2993.2024-0463
Yan Ruihai. Prediction and analysis of foundation pit support deformation for ultra-large dock chambers based on CNN-LSTM-Attention model[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 854-864. doi: 10.20265/j.cnki.issn.1007-2993.2024-0463
Citation: Yan Ruihai. Prediction and analysis of foundation pit support deformation for ultra-large dock chambers based on CNN-LSTM-Attention model[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 854-864. doi: 10.20265/j.cnki.issn.1007-2993.2024-0463

基于CNN-LSTM-Attention模型的超大型船坞坞室基坑围护变形预测分析

doi: 10.20265/j.cnki.issn.1007-2993.2024-0463
详细信息
    作者简介:

    闫瑞海,男,1984年生,硕士,高级工程师,主要从事工程测量与监测工作。E-mail:875049310@qq.com

  • 中图分类号: TU473;U673

Prediction and analysis of foundation pit support deformation for ultra-large dock chambers based on CNN-LSTM-Attention model

  • 摘要: 某超大型船坞坞室基坑采用锚碇式组合钢板桩围护体系。为研究基坑变形规律,对坞墙承台、组合钢板桩、锚碇墙等围护结构进行沉降、水平位移和受力监测,分析其变化趋势、原因及时空关联性。结果表明,采用无内支撑组合钢板桩的船坞坞室围护设计,受软土特性和降水影响,其围护结构顶部沉降和水平位移、组合钢板桩深层水平位移在开挖过程中变形较大,各监测项目数据变化具有较强的时空关联效应。建立了一种可以提取监测时序数据关键特征的CNN-LSTM-Attention组合神经网络模型,以不同监测项目的监测数据作为模型输入,经过CNN神经网络卷积运算、LSTM神经网络回归预测、Attention注意力权重分配、全连接层等操作输出预测值,并与实测数据对比分析。根据试验结果,引入注意力机制的CNN- LSTM-Attention的组合模型,比LSTM模型和BiLSTM模型预测精度更高,且在相邻监测点的预测中,该模型适用性良好,验证了监测点数据变化趋势具有较强的空间相关性。

     

  • 图  1  基坑围护平面简图

    图  2  基坑围护剖面示意图

    图  3  监测点布置示意图

    图  4  坞墙承台顶竖向位移历时变化曲线

    图  5  坞墙承台顶水平位移历时变化曲线

    图  6  锚碇墙顶竖向位移历时变化曲线

    图  7  锚碇墙顶水平位移历时变化曲线图

    图  8  组合钢板桩深层水平位移历时变化曲线

    图  9  锚拉杆受力历时变化曲线

    图  10  LSTM结构示意图

    图  11  CNN-LSTM-Attention模型结构

    图  12  W48沉降预测变化趋势图

    图  13  W48水平位移预测变化趋势图

    图  14  QX25桩体深层水平位移预测变化趋势图

    图  15  ML6锚杆拉力预测变化趋势图

    图  16  W48训练模型预测W47(沉降)

    图  17  W48训练模型预测W47(水平位移)

    图  18  QX25训练模型预测QX24(深层水平位移)

    图  19  ML6训练模型预测ML5(锚杆拉力)

    表  1  土层主要物理力学参数

    层号 土层名称 重度$ \gamma $/(kN·m−3) 内摩擦角$ \varphi $/(°) 黏聚力c/kPa 渗透系数k/(cm·s−1)
    1-1d 吹(冲)填土 17.6 29.5 4 5.0×10−4
    1-2a 灰褐色淤泥质粉质黏土夹粉性土 17.9 21 11 8.0×10−5
    1-2b 灰黄色黏质粉土 18.6 26.5 8 4.0×10−4
    1-2c 灰褐色淤泥质粉质黏土夹粉性土 17.9 18.5 12 5.0×10−5
    1 灰黄色粉质黏土 18.4 20.5 19 3.0×10−6
    2 灰色淤泥质粉质黏土夹黏质粉土 18.1 20.5 13 2.0×10−5
    3-1 灰色砂质粉土 18.7 27 8 5.0×10−4
    3-3 灰色黏质粉土夹淤泥质粉质黏土 18.1 23.5 10 7.0×10−4
    灰色淤泥质黏土 16.9 11.0 12 3.0×10−7
    1-1 灰色黏土 17.3 13.0 14 5.0×10−7
    1-2 灰色黏土 17.8 16.0 16 5.0×10−6
    3-1 灰色粉质黏土夹粉性土 18.2 20.5 20 5.0×10−6
    3-2a 灰色粉质黏土夹粉性土 18.4 22.5 21 5.0×10−6
    3-2b 灰色粉质黏土夹粉性土 18.9 30.5 6 5.0×10−6
    下载: 导出CSV

    表  2  监测相关技术要求

    监测项目点位间距设计报警值监测频率
    承台顶竖向位移20 m±50 mm1次/d
    承台顶水平位移±250 mm1次/d
    锚碇墙顶竖向位移20 m±100 mm1次/d
    锚碇墙顶水平位移±250 mm1次/d
    钢板桩深层水平位移40 m±250 mm1次/d
    锚拉杆受力40 m1200 kN1次/d
    下载: 导出CSV

    表  3  监测点处施工过程及日期

    位置工况施工时段(年-月-日—年-月-日)
    基坑开挖垫层及底板施工底板完成及结构施工
    W40,W412022-11-05—
    2023-03-10
    2022-03-11—
    2023-04-10
    2023-04-11—
    2023-06-10
    W42,W432022-10-09—
    2023-02-17
    2023-02-18—
    2023-03-15
    2023-03-16—
    2023-05-12
    W45,W462022-09-30—
    2022-12-16
    2022-12-17—
    2023-01-16
    2023-01-17—
    2023-03-06
    W47,W482022-08-25—
    2022-10-15
    2022-10-16—
    2022-11-18
    2022-11-19—
    2023-02-05
    下载: 导出CSV

    表  4  不同预测模型RMSE值

    点号及监测项目LSTM RMSEBiLSTM RMSECNN-LSTM-Attention RMSE
    训练集测试集训练集测试集训练集测试集
    W48沉降/mm2.250.982.452.011.540.65
    W48水平位移/mm2.863.972.271.731.740.47
    QX25深层水平位移/mm9.082.657.453.146.231.11
    ML6锚杆拉力/kN13.4417.2812.3314.7211.7913.83
    下载: 导出CSV

    表  5  相邻点预测RMSE值

    W47沉降
    /mm
    W47水平
    位移/mm
    深层水平
    位移/mm
    ML5锚杆
    拉力/kN

    1.452.032.6624.11
    下载: 导出CSV
  • [1] 陈飞仰. 钢板桩在软土基坑工程中的应用研究[J]. 山西建筑, 2024, 50(1): 99-101,120. (CHEN F Y. Research on the application of steel sheet piles in soft soil foundation pit engineering[J]. Shanxi Architecture, 2024, 50(1): 99-101,120. (in Chinese)

    CHEN F Y. Research on the application of steel sheet piles in soft soil foundation pit engineering[J]. Shanxi Architecture, 2024, 50(1): 99-101,120. (in Chinese)
    [2] 侯亚彬, 陈 玉, 王新胜, 等. 山地城市某地铁深基坑监测与特性分析[J]. 测绘通报, 2020(S1): 91-95. (HOU Y B, CHEN Y, WANG X S, et al. Monitoring and characteristic analysis of asubway deep foundation pit in the mountainous city[J]. Bulletin of Surveying and Mapping, 2020(S1): 91-95. (in Chinese)

    HOU Y B, CHEN Y, WANG X S, et al. Monitoring and characteristic analysis of asubway deep foundation pit in the mountainous city[J]. Bulletin of Surveying and Mapping, 2020(S1): 91-95. (in Chinese)
    [3] 刘志刚. 软土地区地铁深基坑监测分析及控制措施研究[J]. 公路, 2019, 64(10): 239-244. (LIU Z G. Research on monitoring analysis and control measures of deep foundation pit of metro in soft soil area[J]. Highway, 2019, 64(10): 239-244. (in Chinese)

    LIU Z G. Research on monitoring analysis and control measures of deep foundation pit of metro in soft soil area[J]. Highway, 2019, 64(10): 239-244. (in Chinese)
    [4] 王卫东. 软土深基坑变形及环境影响分析方法与控制技术[J]. 岩土工程学报, 2024, 46(1): 1-25. (WANG W D. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 1-25. (in Chinese) doi: 10.11779/CJGE20231146

    WANG W D. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 1-25. (in Chinese) doi: 10.11779/CJGE20231146
    [5] 李金华, 宋 涛, 朱海西, 等. 南宁地铁2号线车站深基坑开挖变形规律研究[J]. 施工技术, 2017, 46(19): 32-35. (LI J H, SONG T, ZHU H X, et al. Research on deformation law of station deep foundation excavation in Nanning subway line 2[J]. Construction Technology, 2017, 46(19): 32-35. (in Chinese)

    LI J H, SONG T, ZHU H X, et al. Research on deformation law of station deep foundation excavation in Nanning subway line 2[J]. Construction Technology, 2017, 46(19): 32-35. (in Chinese)
    [6] 倪小东, 王 琛, 唐栋华, 等. 软土地区深基坑超大变形预警及诱因分析[J]. 中南大学学报(自然科学版), 2022, 53(6): 2245-2254. (NI X D, WANG C, TANG D H, et al. Early-warning and inducement analysis of super-large deformation of deep foundation pit on soft soil[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2245-2254. (in Chinese)

    NI X D, WANG C, TANG D H, et al. Early-warning and inducement analysis of super-large deformation of deep foundation pit on soft soil[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2245-2254. (in Chinese)
    [7] 王 淞, 刘永超, 张建新, 等. 深厚软土地区倾斜桩组合支护基坑稳定性研究[J]. 地下空间与工程学报, 2024, 20(2): 556-565,576. (WANG S, LIU Y C, ZHANG J X, et al. Research on stability of foundation pit with inclined pile combination support in deep soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(2): 556-565,576. (in Chinese)

    WANG S, LIU Y C, ZHANG J X, et al. Research on stability of foundation pit with inclined pile combination support in deep soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(2): 556-565,576. (in Chinese)
    [8] 李泽文, 谭 勇, 廖少明, 等. 上海超深基坑地下连续墙的空间变形特性实测分析[J]. 岩土工程学报, 2024, 46(11): 2380-2390. (LI Z W, TAN Y, LIAO S M, et al. Field test on the performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. (in Chinese) doi: 10.11779/CJGE20230760

    LI Z W, TAN Y, LIAO S M, et al. Field test on the performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. (in Chinese) doi: 10.11779/CJGE20230760
    [9] 范立军. 时空效应下双环形内支撑深基坑监测分析[J]. 工程勘察, 2023, 51(11): 9-17. (FAN L J. Monitoring and analysis of deep excavation supported by double annular arched girders under space-time effect[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 9-17. (in Chinese)

    FAN L J. Monitoring and analysis of deep excavation supported by double annular arched girders under space-time effect[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 9-17. (in Chinese)
    [10] 董文宝. 某深基坑监测及变形预测模型研究[D]. 武汉: 武汉理工大学, 2013. (DONG W B. The research on a deep foundation pit monitoring and deformation forecast model[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)

    DONG W B. The research on a deep foundation pit monitoring and deformation forecast model[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese)
    [11] 程秋实. 深圳市某深基坑施工变形监测与预测研究[D]. 长春: 吉林大学, 2022. (CHENG Q S. Research on monitoring and prediction of a deep foundation pit construction deformation in Shenzhen[D]. Changchun: Jilin University, 2022. (in Chinese)

    CHENG Q S. Research on monitoring and prediction of a deep foundation pit construction deformation in Shenzhen[D]. Changchun: Jilin University, 2022. (in Chinese)
    [12] 张立奎, 段大猷, 王佐才. 基于LSTM神经网络的多源数据融合桥梁变形重构方法[J]. 土木与环境工程学报(中英文), 2022, 44(3): 37-43. (ZHANG L K, DUAN D Y, WANG Z C. A multi-source data fusion method for bridge displacement reconstruction based on LSTM neural network[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 37-43. (in Chinese)

    ZHANG L K, DUAN D Y, WANG Z C. A multi-source data fusion method for bridge displacement reconstruction based on LSTM neural network[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 37-43. (in Chinese)
    [13] 王洪德, 肖 杨. 深基坑开挖对邻近地埋管线扰动影响分析[J]. 辽宁工程技术大学学报(自然学报科学版), 2018, 37(5): 769-775. (WANG H D, XIAO Y. Influence of soil disturbance on adjacent buried pipelines due to excavation of deep foundation pit[J]. Journal of Liaoning Technical University (Natural Science), 2018, 37(5): 769-775. (in Chinese)

    WANG H D, XIAO Y. Influence of soil disturbance on adjacent buried pipelines due to excavation of deep foundation pit[J]. Journal of Liaoning Technical University (Natural Science), 2018, 37(5): 769-775. (in Chinese)
    [14] 刘 栋. 深度学习框架下时空关联的基坑变形预测方法研究[D]. 泰安: 山东农业大学, 2022. (LIU D. Research on prediction method of foundation pit deformation based on spatio-temporal correlation under deep learning framework[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese)

    LIU D. Research on prediction method of foundation pit deformation based on spatio-temporal correlation under deep learning framework[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese)
    [15] 张 旭. 基于循环神经网络的时间序列预测方法研究[D]. 南京: 南京大学, 2019. (ZHANG X. Time series forecasting based on recurrent neural networks[D]. Nanjing: Nanjing University, 2019. (in Chinese)

    ZHANG X. Time series forecasting based on recurrent neural networks[D]. Nanjing: Nanjing University, 2019. (in Chinese)
    [16] 周兰庭, 邓思源, 柳志坤, 等. 基于SSA-LSTM-GF的混凝土坝变形预测方法[J]. 河海大学学报(自然科学版), 2023, 51(2): 73-80,149. (ZHOU L T, DONG S Y, LIU Z K, et al. Deformation prediction method of concrete dam based on SSA-LSTM-GF[J]. Journal of Hohai University (Natural Sciences), 2023, 51(2): 73-80,149. (in Chinese)

    ZHOU L T, DONG S Y, LIU Z K, et al. Deformation prediction method of concrete dam based on SSA-LSTM-GF[J]. Journal of Hohai University (Natural Sciences), 2023, 51(2): 73-80,149. (in Chinese)
    [17] 高墨通, 杨维芳, 刘祖昱, 等. 结合卷积神经网络和注意力机制的LSTM采空区地表沉降预测方法[J]. 测绘通报, 2024(6): 53-58,170. (GAO M T, YANG W F, LIU Z Y, et al. LSTM goaf surface subsidence prediction method combining convolutional neural network and attention mechanism[J]. Bulletin of Surveying and Mapping, 2024(6): 53-58,170. (in Chinese)

    GAO M T, YANG W F, LIU Z Y, et al. LSTM goaf surface subsidence prediction method combining convolutional neural network and attention mechanism[J]. Bulletin of Surveying and Mapping, 2024(6): 53-58,170. (in Chinese)
    [18] 李 鑫, 魏冠军, 张德龙. 联合PS-InSAR技术与多变量LSTM神经网络的高铁路基冻胀形变预测研究[J]. 测绘通报, 2024(1): 58-64. (LI X, WEI G J, ZHANG D L. Research on frost heave deformation prediction of high railway foundation combined with PS-InSAR technology and multivariable LSTM neural network[J]. Bulletin of Surveying and Mapping, 2024(1): 58-64. (in Chinese)

    LI X, WEI G J, ZHANG D L. Research on frost heave deformation prediction of high railway foundation combined with PS-InSAR technology and multivariable LSTM neural network[J]. Bulletin of Surveying and Mapping, 2024(1): 58-64. (in Chinese)
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-12
  • 修回日期:  2025-02-14
  • 录用日期:  2025-03-06
  • 网络出版日期:  2025-12-08
  • 刊出日期:  2025-12-08

目录

    /

    返回文章
    返回