Mechanical test and application of improved waste mud solidified body
-
摘要: 废弃泥浆有效处置已成为工程建设和环境保护的问题之一,基于废弃泥浆资源化理念,将实际工程中的废弃泥浆取出并测定其参数,然后掺入不同比例的膨润土、粉煤灰及水泥进行固化改良,制备膏状浆液。通过正交设计进行9组试验,分析不同龄期下无侧限抗压强度的影响因素及其显著性。试验表明:试样的无侧限抗压强度随着养护龄期的增加而增大,泥浆比例对不同养护龄期下试样的无侧限抗压强度影响最为显著,3 d和28 d时各因素对无侧限抗压强度影响的显著性顺序为:泥浆比例>粉煤灰掺量>膨润土掺量;7 d和14 d时各因素对无侧限抗压强度影响的显著性顺序为:泥浆比例>膨润土掺量>粉煤灰掺量。研究成果可为废弃浆液资源化利用提供借鉴。Abstract: The effective disposal of waste mud has become a key issue in engineering construction and environmental protection. Based on the concept of waste mud recycling, this paper takes out the waste mud in the actual project and measures its parameters, and then mixes a fixed proportion of bentonite, fly ash and cement for solidification and improvement to prepare paste slurry. Nine groups of tests were carried out by orthogonal design to analyze the influencing factors and significance of unconfined compressive strength at different ages. The test shows that the unconfined compressive strength of the sample increases with the increase of the curing age, and the slurry ratio has the most significant effect on the unconfined compressive strength of the sample at different curing ages. The significance order of the influence of each factor on the unconfined compressive strength at 3 d and 28 d is slurry ratio, fly ash, bentonite; the significance order of the influence of each factor on the unconfined compressive strength at 7 d and 14 d is slurry ratio, bentonite, fly ash. The research results have certain reference significance for the application of paste slurry as building materials in practical engineering.
-
Key words:
- waste mud /
- paste slurry /
- curing age /
- unconfined compressive strength
-
表 1 各因素水平表
水平 因素 A/% B/% C 1 19 0 2.5 2 26 15 3 3 33 30 3.5 表 2 正交试验数据表
MPa 编号 A B C 3 d 7 d 14 d 28 d Z1 A1 B1 C1 0.87 4.00 5.48 5.83 Z2 A1 B2 C3 0.62 2.03 2.56 2.69 Z3 A1 B3 C2 0.81 2.88 3.76 4.98 Z4 A2 B1 C3 0.61 2.20 3.00 3.22 Z5 A2 B2 C2 0.76 3.37 3.88 4.97 Z6 A2 B3 C1 0.94 4.39 6.57 8.32 Z7 A3 B1 C2 0.60 3.19 4.48 4.65 Z8 A3 B2 C1 0.91 4.93 6.11 7.67 Z9 A3 B3 C3 0.71 2.45 3.81 4.39 表 3 3 d无侧限抗压强度极差分析结果
Ki值 因素 A B C K1 2.30 2.08 2.72 K2 2.31 2.29 2.17 K3 2.22 2.46 1.94 $ {\overline K _1} $ 0.77 0.69 0.91 $ {\overline K _2} $ 0.77 0.76 0.72 $ {\overline K _3} $ 0.74 0.82 0.65 R 0.03 0.13 0.27 表 4 7 d无侧限抗压强度极差分析结果
Ki值 因素 A B C K1 8.91 9.39 13.32 K2 9.96 10.33 9.44 K3 10.57 9.72 6.68 $ {\overline K _1} $ 2.97 3.13 4.44 $ {\overline K _2} $ 3.32 3.44 3.15 $ {\overline K _3} $ 3.52 3.24 2.23 R 0.55 0.31 2.21 表 5 14 d无侧限抗压强度极差分析结果
Ki值 因素 A B C K1 11.80 12.96 18.16 K2 13.45 12.55 12.12 K3 14.40 14.14 9.37 $ {\overline K _1} $ 3.93 4.32 6.05 $ {\overline K _2} $ 4.48 4.18 4.04 $ {\overline K _3} $ 4.80 4.71 3.12 R 0.87 0.53 2.93 表 6 28 d无侧限抗压强度极差分析结果
Ki值 因素 A B C K1 13.50 13.70 21.82 K2 16.51 15.33 14.60 K3 16.71 17.69 10.30 $ {\overline K _1} $ 4.50 4.57 7.27 $ {\overline K _2} $ 5.50 5.11 4.87 $ {\overline K _3} $ 5.57 5.90 3.43 R 1.07 1.33 3.84 -
[1] 耿贵军, 高 博, 曹正峰, 等. 工程废弃泥浆处理技术研究及应用[J]. 建筑机械, 2022(5): 16-19. (GENG G J, GAO B, CAO Z F, et al. Research and application of engineering waste mud treatment technology[J]. Construction Machinery, 2022(5): 16-19. (in Chinese)GENG G J, GAO B, CAO Z F, et al. Research and application of engineering waste mud treatment technology[J]. Construction Machinery, 2022(5): 16-19. (in Chinese) [2] 奉 明, 王 兵, 张鹏飞, 等. 低密度深井钻井废弃泥浆固化技术研究[J]. 广州化工, 2009, 37(2): 128-130,139. (FENG M, WANG B, ZHANG P F, et al. Study on low-density deep well drilling waste solidification technology[J]. Guangzhou Chemical Industry, 2009, 37(2): 128-130,139. (in Chinese) doi: 10.3969/j.issn.1001-9677.2009.02.043FENG M, WANG B, ZHANG P F, et al. Study on low-density deep well drilling waste solidification technology[J]. Guangzhou Chemical Industry, 2009, 37(2): 128-130,139. (in Chinese) doi: 10.3969/j.issn.1001-9677.2009.02.043 [3] 齐 志, 许凌峰, 吴瑞旭, 等. 钻孔灌注桩大体量废弃泥浆快速处理工艺及质量控制研究[J]. 价值工程, 2023, 42(26): 85-87. (QI Z, XU L F, WU R X, et al. Research on rapid treatment process and quality control of large volume waste mud in drilled piles[J]. Value Engineering, 2023, 42(26): 85-87. (in Chinese) doi: 10.3969/j.issn.1006-4311.2023.26.028QI Z, XU L F, WU R X, et al. Research on rapid treatment process and quality control of large volume waste mud in drilled piles[J]. Value Engineering, 2023, 42(26): 85-87. (in Chinese) doi: 10.3969/j.issn.1006-4311.2023.26.028 [4] 樊勇军, 武 恒, 王士国. 天津地区工程废弃泥浆物理压滤处置技术研究[J]. 钻探工程, 2021, 48(7): 115-120. (FAN Y J, WU H, WANG S G. Research on physical pressure filtration treatment technology for waste mud in Tianjin[J]. Drilling Engineering, 2021, 48(7): 115-120. (in Chinese) doi: 10.12143/j.ztgc.2021.07.018FAN Y J, WU H, WANG S G. Research on physical pressure filtration treatment technology for waste mud in Tianjin[J]. Drilling Engineering, 2021, 48(7): 115-120. (in Chinese) doi: 10.12143/j.ztgc.2021.07.018 [5] 邱继耀. 城市地铁车站土建工程废弃泥浆的处理技术研究[J]. 中国建设信息化, 2019(15): 64-65. (QIU J Y. Research on the treatment technology of waste mud in civil engineering of urban subway station[J]. Informatization of China Construction, 2019(15): 64-65. (in Chinese)QIU J Y. Research on the treatment technology of waste mud in civil engineering of urban subway station[J]. Informatization of China Construction, 2019(15): 64-65. (in Chinese) [6] 韩 超, 俞越中, 柏 彬, 等. 自重及加载条件下絮凝剂调理废弃泥浆的脱水效果[J]. 长江科学院院报, 2024, 41(2): 115-122. (HAN C, YU Y Z, BAI B, et al. Dewatering effect of flocculant conditioning waste mud under self-weight/loading conditions[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(2): 115-122. (in Chinese) doi: 10.11988/ckyyb.20220930HAN C, YU Y Z, BAI B, et al. Dewatering effect of flocculant conditioning waste mud under self-weight/loading conditions[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(2): 115-122. (in Chinese) doi: 10.11988/ckyyb.20220930 [7] 王东星, 伍林峰, 唐弈锴, 等. 建筑废弃泥浆泥水分离过程与效果评价[J]. 浙江大学学报(工学版), 2020, 54(6): 1049-1057. (WANG D X, WU L F, TANG Y K, et al. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1049-1057. (in Chinese)WANG D X, WU L F, TANG Y K, et al. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1049-1057. (in Chinese) [8] 束双武, 华俊杰, 许煜成, 等. 顶管施工废弃泥浆的泥水分离特性研究[J]. 河南科学, 2023, 41(1): 136-143. (SHU S W, HUA J J, XU Y C, et al. Mud-water separation characteristics of waste slurry in pipe jacking construction[J]. Henan Science, 2023, 41(1): 136-143. (in Chinese) doi: 10.3969/j.issn.1004-3918.2023.01.019SHU S W, HUA J J, XU Y C, et al. Mud-water separation characteristics of waste slurry in pipe jacking construction[J]. Henan Science, 2023, 41(1): 136-143. (in Chinese) doi: 10.3969/j.issn.1004-3918.2023.01.019 [9] 董满生, 董远超. 空间立管真空泥水分离试验研究[J]. 真空科学与技术学报, 2019, 39(7): 552-556. (DONG M S, DONG Y C. Rapid dewatering of waste construction slurry in vertical tubeby vacuum suction[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(7): 552-556. (in Chinese)DONG M S, DONG Y C. Rapid dewatering of waste construction slurry in vertical tubeby vacuum suction[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(7): 552-556. (in Chinese) [10] 郑 亮, 刘晓烨, 潘希军, 等. 武汉地区建筑废弃泥浆泥水分离试验研究[J]. 钻探工程, 2021, 48(8): 110-117. (ZHENG L, LIU X Y, PAN X J, et al. Experiment on separation of mud and water from construction waste mud in the Wuhan area[J]. Drilling Engineering, 2021, 48(8): 110-117. (in Chinese) doi: 10.12143/j.ztgc.2021.08.017ZHENG L, LIU X Y, PAN X J, et al. Experiment on separation of mud and water from construction waste mud in the Wuhan area[J]. Drilling Engineering, 2021, 48(8): 110-117. (in Chinese) doi: 10.12143/j.ztgc.2021.08.017 [11] 武亚军, 牛 坤, 唐海峰, 等. 药剂真空预压法处理工程废浆中生石灰的增渗作用[J]. 岩土力学, 2017, 38(12): 3453-3461. (WU Y J, NIU K, TANG H F, et al. Enhanced permeability of calcium lime in construction waste slurry improvement by vacuum preloading with flocculation[J]. Rock and Soil Mechanics, 2017, 38(12): 3453-3461. (in Chinese)WU Y J, NIU K, TANG H F, et al. Enhanced permeability of calcium lime in construction waste slurry improvement by vacuum preloading with flocculation[J]. Rock and Soil Mechanics, 2017, 38(12): 3453-3461. (in Chinese) [12] 韦 猛, 亓金慧, 张宁馨, 等. 吸水树脂用于废弃泥浆处理的试验研究[J]. 煤田地质与勘探, 2019, 47(6): 207-211. (WEI M, QI J H, ZHANG N X, et al. Test of water absorbent resin for disposal of waste mud[J]. Coal Geology & Exploration, 2019, 47(6): 207-211. (in Chinese)WEI M, QI J H, ZHANG N X, et al. Test of water absorbent resin for disposal of waste mud[J]. Coal Geology & Exploration, 2019, 47(6): 207-211. (in Chinese) [13] 詹良通, 张 斌, 郭晓刚, 等. 废弃泥浆底部真空-上部堆载预压模型试验研究[J]. 岩土力学, 2020, 41(10): 3245-3254. (ZHAN L T, ZHANG B, GUO X G, et al. Physical modeling study on treatment of waste slurry with vacuum preloading at bottom combined with upper surcharge loading[J]. Rock and Soil Mechanics, 2020, 41(10): 3245-3254. (in Chinese)ZHAN L T, ZHANG B, GUO X G, et al. Physical modeling study on treatment of waste slurry with vacuum preloading at bottom combined with upper surcharge loading[J]. Rock and Soil Mechanics, 2020, 41(10): 3245-3254. (in Chinese) [14] 夏新星, 陈文峰, 王龙涛. 复合调理剂对废弃建筑泥浆脱水性能的影响[J]. 环境工程学报, 2022, 16(4): 1313-1322. (XIA X X, CHEN W F, WANG L T. Effect of composite conditioner on dewatering performance of high alkaline construction slurry[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1313-1322. (in Chinese) doi: 10.12030/j.cjee.202111087XIA X X, CHEN W F, WANG L T. Effect of composite conditioner on dewatering performance of high alkaline construction slurry[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1313-1322. (in Chinese) doi: 10.12030/j.cjee.202111087 [15] 高 宇, 周普玉, 杨 霞, 等. 絮凝剂对工程废弃泥浆脱水性能的影响[J]. 环境工程学报, 2017, 11(10): 5597-5602. (GAO Y, ZHOU P Y, YANG X, et al. Effect of flocculants on dehydration properties of construction waste slurry[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5597-5602. (in Chinese) doi: 10.12030/j.cjee.201611101GAO Y, ZHOU P Y, YANG X, et al. Effect of flocculants on dehydration properties of construction waste slurry[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5597-5602. (in Chinese) doi: 10.12030/j.cjee.201611101 [16] 河北省市场监督管理局. 预拌流态固化土回填技术规程: DB13/T 5821—2023[S]. (Hebei Provincial Administration for Market Regulation. Mixing of fluid-stabilized soil backfilling technology specification: DB13/T 5821—2023[S]. (in Chinese)Hebei Provincial Administration for Market Regulation. Mixing of fluid-stabilized soil backfilling technology specification: DB13/T 5821—2023[S]. (in Chinese) [17] 中华人民共和国建设部, 国家质量监督检验检疫总局. 混凝土结构工程施工质量验收规范: GB 50204—2002[S]. 北京: 中国建筑工业出版社, 2011. (Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine. Code for acceptance of constructional quallty of concrete structures: GB 50204—2002[S]. Beijing: China Construction Industry Press, 2011. (in Chinese)Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine. Code for acceptance of constructional quallty of concrete structures: GB 50204—2002[S]. Beijing: China Construction Industry Press, 2011. (in Chinese) -
下载: