A rapid analysis method for needle-shaped and flake particles of pea gravel based on image processing
-
摘要: 利用图像处理技术,可对豆砾石针片状颗粒含量进行测定。但在采集豆砾石厚度信息时,对于平面摆放的豆砾石,传统的采集方式只能逐行多次采集,导致检测效率低、无法快速对其进行评价。为提升检测效率,设计了一种阶梯状摆放策略,从不同角度拍摄两张照片,结合IPP(Image-Pro Plus)软件,从而高效获取豆砾石的关键尺寸信息,并通过修正系数消除因豆砾石与摄像头距离不一导致的误差。通过图像处理软件实测豆砾石颗粒的针片状含量,并与传统的游标卡尺方法进行对比分析,研究结果表明:(1)采用阶梯式摆放设计可快速获取豆砾石尺寸信息,通过系数修正后,其信息更加真实有效,提高了整体检测效率;(2)使用IPP软件得出的针片状颗粒含量,其误差控制在允许范围内。Abstract: Image processing technology allows for the determination of needle-shaped and flake particle content in pea gravel. However, when collecting the thickness information of pea gravel, the traditional collection method can only collect the pea gravel placed on the plane line by line many times. Aimed at the problem of low detection efficiency and unable to evaluate it quickly caused by the inconvenience of this acquisition method, a stepped placement strategy was designed, which took two photos from different angles, combined with IPP software (Image Pro Plus), to efficiently obtain the key size information of the gravel, and eliminate the error caused by the different distance between the gravel and the camera through the correction coefficient. The needle and flake content of pea gravel particles was measured by image processing software and compared with the traditional vernier caliper method. The results show that: (1) The step layout design can quickly obtain the size information of pea gravel, and after the coefficient correction, the information is more authentic and effective, which improves the overall detection efficiency; (2) The error of needle flake particle content obtained by IPP software is controlled within the allowable range.
-
表 1 豆砾石颗粒筛分结果
公称粒径/mm 16.0 10.0 5.0 累计筛余/% 0 10 90 表 2 修正系数
豆砾石层号 长、宽修正系数 厚度修正系数 1 0.969 1.031 2 1 1 3 1.033 0.962 4 1.059 0.917 表 3 豆砾石针片状含量及相对误差计算结果
组号 Q0/% Q1/% ω/% 组号 Q0/% Q1/% ω/% 1 9.41 8.53 9.35 11 8.19 7.28 11.11 2 6.94 6.61 4.76 12 6.89 6.44 6.53 3 11.59 10.75 7.25 13 5.76 5.3 7.99 4 5.15 4.77 7.38 14 8.79 8.24 6.26 5 8.23 7.94 3.52 15 6.54 6.17 5.66 6 14.9 14.24 4.43 16 8.85 8.65 2.26 7 8.11 7.59 6.41 17 5.12 4.51 11.91 8 13.16 12.75 3.12 18 6.22 5.39 13.34 9 6.84 6.27 8.33 19 10.45 9.77 6.51 10 8.94 8.22 8.05 20 6.86 6.42 6.85 -
[1] 纪 伦, 刘海权, 张 磊, 等. 粗集料针片状含量对沥青混合料结构影响[J]. 哈尔滨工业大学学报, 2018, 50(9): 40-46. (JI L, LIU H Q, ZHANG L, et al. Effects of flat and elongated particles content in coarse aggregate on asphalt mixture structure[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 40-46. (in Chinese)JI L, LIU H Q, ZHANG L, et al. Effects of flat and elongated particles content in coarse aggregate on asphalt mixture structure[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 40-46. (in Chinese) [2] 林书庆. 粗集料粒形及级配对混凝土强度离散性的影响[D]. 重庆: 重庆交通大学, 2021. (LIN S Q. Influence of coarse aggregate shape and gradation on dispersion of concrete strength[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese)LIN S Q. Influence of coarse aggregate shape and gradation on dispersion of concrete strength[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese) [3] 韩宏伟. 粗骨料针片状对混凝土性能的影响研究[J]. 低温建筑技术, 2020, 42(7): 53-55. (HAN H W. The influence of coarse aggregate needle flake on concrete performance[J]. Low Temperature Architecture Technology, 2020, 42(7): 53-55. (in Chinese)HAN H W. The influence of coarse aggregate needle flake on concrete performance[J]. Low Temperature Architecture Technology, 2020, 42(7): 53-55. (in Chinese) [4] 张 巍, 赵同彬, 宋义敏, 等. 基于数字图像相关方法的巴西圆盘变形局部化分析[J]. 山东科技大学学报(自然科学版), 2017, 36(6): 47-51. (ZHANG W, ZHAO T B, SONG Y M, et al. Analysis of Brazilian disc deformation localization based on digital speckle correlation method[J]. Journal of Shandong University of Science and Technology (Natural Science), 2017, 36(6): 47-51. (in Chinese)ZHANG W, ZHAO T B, SONG Y M, et al. Analysis of Brazilian disc deformation localization based on digital speckle correlation method[J]. Journal of Shandong University of Science and Technology (Natural Science), 2017, 36(6): 47-51. (in Chinese) [5] 杨 芬, 马丽英, 曹源文, 等. 基于Image-Pro Plus的粗集料针片状颗粒含量分析[J]. 筑路机械与施工机械化, 2016, 33(9): 49-52. (YANG F, MA L Y, CAO Y W, et al. Analysis of flat and elongated particles in coarse aggregate based on Image-Pro Plus[J]. Road Machinery & Construction Mechanization, 2016, 33(9): 49-52. (in Chinese)YANG F, MA L Y, CAO Y W, et al. Analysis of flat and elongated particles in coarse aggregate based on Image-Pro Plus[J]. Road Machinery & Construction Mechanization, 2016, 33(9): 49-52. (in Chinese) [6] 谢池鑫. 基于二值图像的碎石针片状颗粒检测方法研究[J]. 轻工科技, 2012, 28(6): 122-123. (XIE C X. Research on the detection method of crushed stone needle like particles based on binary images[J]. Light Industry Science and Technology, 2012, 28(6): 122-123. (in Chinese)XIE C X. Research on the detection method of crushed stone needle like particles based on binary images[J]. Light Industry Science and Technology, 2012, 28(6): 122-123. (in Chinese) [7] BRZEZICKI J M, KASPERKIEWICZ J. Automatic image analysis in evaluation of aggregate shape[J]. Journal of Computing in Civil Engineering, 1999, 13(2): 123-128. [8] 王 维, 马丽英, 杨 芬. 基于Image-Pro Plus的粗集料针片状颗粒评价方法[J]. 筑路机械与施工机械化, 2018, 35(11): 107-111. (WANG W, MA L Y, YANG F. Evaluation method of elongated and flaky particles of coarse aggregate based on Image-Pro Plus[J]. Road Machinery & Construction Mechanization, 2018, 35(11): 107-111. (in Chinese)WANG W, MA L Y, YANG F. Evaluation method of elongated and flaky particles of coarse aggregate based on Image-Pro Plus[J]. Road Machinery & Construction Mechanization, 2018, 35(11): 107-111. (in Chinese) [9] 汪雪英, 黄秋香, 胡 超, 等. 基于数字图像分析的豆砾石形态特征量化研究[J]. 地下空间与工程学报, 2022, 18(2): 458-464. (WANG X Y, HUANG Q X, HU C, et al. Quantification research on morphological characteristics of pea gravel based on digital image processing[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(2): 458-464. (in Chinese)WANG X Y, HUANG Q X, HU C, et al. Quantification research on morphological characteristics of pea gravel based on digital image processing[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(2): 458-464. (in Chinese) [10] 陈 杰, 李红杰, 万 成. 基于数字图像技术的集料针片状量测方法[J]. 中国公路, 2013(8): 124-125. (CHEN J, LI H J, WAN C. Measurement method of aggregate needle and sheet based on digital image technology[J]. China Highway, 2013(8): 124-125. (in Chinese)CHEN J, LI H J, WAN C. Measurement method of aggregate needle and sheet based on digital image technology[J]. China Highway, 2013(8): 124-125. [11] 徐 科, 张肖宁, 王端宜. 利用数字图像处理技术量测针片状颗粒含量[J]. 交通与计算机, 2005, 23(5): 46-48. (XU K, ZHANG X N, WANG D Y. Measuring percentage of flat-elongated particles based on digital image processing method[J]. Journal of Transport Information and Safety, 2005, 23(5): 46-48. (in Chinese)XU K, ZHANG X N, WANG D Y. Measuring percentage of flat-elongated particles based on digital image processing method[J]. Journal of Transport Information and Safety, 2005, 23(5): 46-48. (in Chinese) [12] 林 辉. 基于数字图像处理技术的粗集料形状特征量化研究[D]. 长沙: 湖南大学, 2007. (LIN H. Quantitative study of shape characteristics for coarse aggregate based on digital image processing[D]. Changsha: Hunan University, 2007. (in Chinese)LIN H. Quantitative study of shape characteristics for coarse aggregate based on digital image processing[D]. Changsha: Hunan University, 2007. (in Chinese) [13] 周建昆, 曾 晟, 梁乃兴, 等. 基于数字图像处理技术的粗集料针片状评价与实例验证[J]. 公路交通技术, 2021, 37(3): 45-50,56. (ZHOU J K, ZENG S, LIANG N X, et al. Evaluation method and example verification of coarse aggregate needle and flake based on digital image technology[J]. Technology of Highway and Transport, 2021, 37(3): 45-50,56. (in Chinese)ZHOU J K, ZENG S, LIANG N X, et al. Evaluation method and example verification of coarse aggregate needle and flake based on digital image technology[J]. Technology of Highway and Transport, 2021, 37(3): 45-50,56. (in Chinese) [14] 李金阳. 基于数字图像技术的粗集料形状质量快速检测方法研究[D]. 重庆: 重庆交通大学, 2023. (LI J Y. Research on rapid detection method of coarse aggregate shape quality based on digital image technology[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese)LI J Y. Research on rapid detection method of coarse aggregate shape quality based on digital image technology[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese) [15] 李 智, 刘佳辉. 基于分区OTSU法的沥青混合料图像分割技术[J]. 武汉理工大学学报, 2011, 33(6): 50-53,58. (LI Z, LIU J H. Segmentation of asphalt mixtures using X-ray computed tomography images based on ring block and OTSU method[J]. Journal of Wuhan University of Technology, 2011, 33(6): 50-53,58. (in Chinese)LI Z, LIU J H. Segmentation of asphalt mixtures using X-ray computed tomography images based on ring block and OTSU method[J]. Journal of Wuhan University of Technology, 2011, 33(6): 50-53,58. (in Chinese) [16] 何 锐, 周娟兰, 嵇绍华, 等. 基于数字图像技术的混凝土粗集料空间分布特征[J]. 长安大学学报(自然科学版), 2014, 34(6): 34-40. (HE R, ZHOU J L, JI S H, et al. Spatial distribution of coarse aggregate in concrete based on digital image processing technology[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(6): 34-40. (in Chinese)HE R, ZHOU J L, JI S H, et al. Spatial distribution of coarse aggregate in concrete based on digital image processing technology[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(6): 34-40. (in Chinese) [17] 于舒雅. 豆砾石形态特征量化分析与回填灌浆模拟试验研究[D]. 成都: 成都理工大学, 2018. (YU S Y. Quantitative analysis of the morphological characteristics of pea-gravel and its simulation test of backfill grouting[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese)YU S Y. Quantitative analysis of the morphological characteristics of pea-gravel and its simulation test of backfill grouting[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese) [18] 国家市场监督管理总局, 国家标准化管理委员会. 建设用卵石、碎石: GB/T 14685—2022[S]. 北京: 中国标准出版社, 2022. (State Administration for Market Regulation, National Standardization Administration. Pebble and crushed stone for construction: GB/T 14685—2022[S]. Beijing: Standards Press of China, 2022. (in Chinese)State Administration for Market Regulation, National Standardization Administration. Pebble and crushed stone for construction: GB/T 14685—2022[S]. Beijing: Standards Press of China, 2022. (in Chinese) -
下载: