Model tests and numerical simulations of grouting diffusion law in hole for slope protection of the Qiantang River
-
摘要: 依托钱塘江北岸海塘安澜工程,提出采用高强水泥砂浆钻孔注浆加固迎水坡护面结构块石替代砌石更换的方案。基于模型试验和数值模拟方法,研究了水泥砂浆在砌石护坡下碎石层中的流动扩散规律,探讨了不同流动度的水泥砂浆其注浆压力、注浆量对浆液流动扩散形态以及整体填充效果的影响规律。研究结果表明:不同流动度的水泥砂浆整体扩散方向以及优势扩散通道相同,均为从注浆口处水平向对称扩散,浆液优先流动到砌石护坡下端,而后向上,但浆液在碎石层中的扩散以及破坏模式会因流动度不同而改变,不同流动度的水泥砂浆对应不同注浆压力和注浆量的破坏值。试验条件下,当浆液初始流动度为400 mm、极限注浆压力为3 MPa时,护坡极限注浆量可达51 kg;当以2 MPa恒定注浆压力时,其浆液流动薄弱区的有效体积充填率能达到83%,接近泵式注浆85%的填充效果,满足规范要求。Abstract: Based on the Haitang Anlan project on the north bank of the Qiantang River, a replacement scheme of masonry was proposed to use high-strength cement mortar drilling and grouting to strengthen the structural blocks of the protective surface of the waterfront slope. Model tests and numerical simulations on the flow and diffusion law of cement mortar in the gravel layer under masonry slope protection were carried out. The influence of grouting pressure and grouting amount on the flow diffusion form of the slurry and the overall filling effect of cement mortar with different fluidity degrees was discussed. The results show that the overall diffusion direction and dominant diffusion channel of cement mortar with different fluidity degrees are the same, which are horizontal to symmetrical diffusion from the grouting port, and the grout preferentially flows to the lower end of the masonry slope protection, and then upward, but the diffusion and failure mode of the grout in the gravel layer will change due to different fluidity. Cement mortar with different fluidity also corresponds to the failure value of different grouting pressures and grouting amounts. In this model test condition, when the initial fluidity of the slurry is about 400 mm, the ultimate grouting pressure is 3 MPa, and the mass of the ultimate injected slurry is about 51 kg. When the grouting pressure is constant at 2 MPa, the effective volume filling rate of the weak area of the slurry flow can reach 83%, which is close to the filling effect of 85% of the pump grouting and meets the requirements of the specification.
-
表 1 模型试验参数
试验标号 灌浆料标号 水灰质量比 初始截锥
流动度/mm浆液密度
/(kg∙m−3)碎石层
厚度/cmEX-1 C80 0.16 427 2420 12 EX-2 C100 0.13 392 2480 12 -
[1] 王小茹, 张世安. 水利工程施工中堤坝防渗加固技术探析[J]. 东北水利水电, 2023, 41(11): 14-16, 49. (WANG X R, ZHANG S A. Analysis on anti-seepage reinforcement technology of embankment in the construction of water conservancy projects[J]. Water Resources & Hydropower of Northeast China, 2023, 41(11): 14-16, 49. (in Chinese)WANG X R, ZHANG S A. Analysis on anti-seepage reinforcement technology of embankment in the construction of water conservancy projects[J]. Water Resources & Hydropower of Northeast China, 2023, 41(11): 14-16, 49. (in Chinese) [2] 周 航, 李建斌, 刘汉龙, 等. 侧向辐射注浆技术引起地表隆起变形分析[J]. 防灾减灾工程学报, 2018, 38(5): 850-856. (ZHOU H, LI J B, LIU H L, et al. Analysis on ground heave induced by lateral radiation grouting technique[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 850-856. (in Chinese)ZHOU H, LI J B, LIU H L, et al. Analysis on ground heave induced by lateral radiation grouting technique[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 850-856. (in Chinese) [3] 韩月旺, 钟小春, 虞兴福. 盾构壁后注浆体变形及压力消散特性试验研究[J]. 地下空间与工程学报, 2007, 3(6): 1142-1147,1175. (HAN Y W, ZHONG X C, YU X F. Experimental research on the backfill grout deformation and grout pressure dissipation of shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(6): 1142-1147,1175. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.06.035HAN Y W, ZHONG X C, YU X F. Experimental research on the backfill grout deformation and grout pressure dissipation of shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(6): 1142-1147,1175. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.06.035 [4] 袁小会, 韩月旺, 钟小春. 盾尾注浆硬性浆液固结变形数值计算模型构建[J]. 岩土力学, 2012, 33(3): 925-932. (YUAN X H, HAN Y W, ZHONG X C. Numerical model building for consolidation deformation of cemented mortar for shield tail grouting[J]. Rock and Soil Mechanics, 2012, 33(3): 925-932. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.043YUAN X H, HAN Y W, ZHONG X C. Numerical model building for consolidation deformation of cemented mortar for shield tail grouting[J]. Rock and Soil Mechanics, 2012, 33(3): 925-932. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.043 [5] HÄSSLER L, HÅKANSSON U, STILLE H, Computer-simulated flow of grouts in jointed rock[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 441-446. [6] 郝 哲, 王介强, 何修仁. 岩体裂隙注浆的计算机模拟研究[J]. 岩土工程学报, 1999, 21(6): 727-730. (HAO Z, WANG J Q, HE X R. Computerized simulation of crack grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 727-730. (in Chinese)HAO Z, WANG J Q, HE X R. Computerized simulation of crack grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 727-730. (in Chinese) [7] 罗平平, 朱岳明, 黄金桂, 等. 二维随机裂隙岩体灌浆数值模拟[J]. 河海大学学报(自然科学版), 2006, 34(3): 295-298. (LUO P P, ZHU Y M, HUANG J G, et al. Two-dimensional numerical simulation of grouting in random fractured rock mass[J]. Journal of Hohai University (Natural Sciences), 2006, 34(3): 295-298. (in Chinese)LUO P P, ZHU Y M, HUANG J G, et al. Two-dimensional numerical simulation of grouting in random fractured rock mass[J]. Journal of Hohai University (Natural Sciences), 2006, 34(3): 295-298. (in Chinese) [8] 刘 健, 刘人太, 张 霄, 等. 水泥浆液裂隙注浆扩散规律模型试验与数值模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2445-2452. (LIU J, LIU R T, ZHANG X, et al. Diffusion law model test and numerical simulation of cement fracture grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2445-2452. (in Chinese)LIU J, LIU R T, ZHANG X, et al. Diffusion law model test and numerical simulation of cement fracture grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2445-2452. (in Chinese) [9] RAFI J, STILLE H. A method for determining grouting pressure and stop criteria to control grout spread distance and fracture dilation[J]. Tunnelling and Underground Space Technology, 2021, 112: 103885. [10] GOTHÄLL R, STILLE H. Fracture dilation during grouting[J]. Tunnelling and Underground Space Technology, 2009, 24(2): 126-135. [11] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 海堤工程设计规范: GB/T 51015—2014[S]. 北京: 中国计划出版社, 2015. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of sea dike project: GB/T 51015—2014[S]. Beijing: China Planning Press, 2015. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of sea dike project: GB/T 51015—2014[S]. Beijing: China Planning Press, 2015. (in Chinese) [12] 刘建祥, 赵唯坚, 孙博超, 等. 灌浆料流变性能的时变特性与屈服应力演化模型[J]. 土木工程学报, 2024, 57(5): 27-40. (LIU J X, ZHAO W J, SUN B C, et al. Time-dependent characteristics of rheological properties and yield stress evolution of grouting materials[J]. China Civil Engineering Journal, 2024, 57(5): 27-40. (in Chinese)LIU J X, ZHAO W J, SUN B C, et al. Time-dependent characteristics of rheological properties and yield stress evolution of grouting materials[J]. China Civil Engineering Journal, 2024, 57(5): 27-40. (in Chinese) [13] 杨钱荣, 赵宗志, 张庆钊, 等. 若干因素对水泥砂浆流变性能的影响[J]. 建筑材料学报, 2019, 22(4): 506-515. (YANG Q R, ZHAO Z Z, ZHANG Q Z, et al. Influence of several factors on rheological properties of cement mortar[J]. Journal of Building Materials, 2019, 22(4): 506-515. (in Chinese)YANG Q R, ZHAO Z Z, ZHANG Q Z, et al. Influence of several factors on rheological properties of cement mortar[J]. Journal of Building Materials, 2019, 22(4): 506-515. (in Chinese) [14] 徐 斌, 董书宁, 尹尚先, 等. 倾斜裂隙中宾汉姆流体非稳定浆液运移机理[J]. 煤炭学报, 2022, 47(11): 4083-4093. (XU B, DONG S N, YIN S X, et al. Mechanism of inclined fracture slurry transport based on non-stable Bingham fluid[J]. Journal of China Coal Society, 2022, 47(11): 4083-4093. (in Chinese)XU B, DONG S N, YIN S X, et al. Mechanism of inclined fracture slurry transport based on non-stable Bingham fluid[J]. Journal of China Coal Society, 2022, 47(11): 4083-4093. (in Chinese) -
下载: