Study on Stability of Advance Self-propelled Anchor Rod for Fault Breccia Tunnel
-
摘要: 对于强风化断层角砾岩隧道,超前支护时易出现卡钻及难以成孔等问题,隧道开挖易引起掌子面坍塌,造成安全隐患。为解决断层角砾岩隧道超前施工难题,结合北京玉渡山隧道自进式中空注浆锚杆超前施工技术的成功应用,阐述了在断层角砾岩隧道施工中自进式中空注浆锚杆代替普通超前小导管作为超前支护的施工优点,并结合现场情况建立了断层角砾岩隧道力学模型对围岩塑性区进行分析。通过分析得出:合理增加断层角砾岩隧道初始支护强度可以一定程度上抑制隧道围岩塑性区的扩展,提升围岩稳定性。针对该情况,通过试验对比确定了自进式锚杆合理的支护参数与注浆压力。并根据掌子面开挖后超前支护效果验证了上述参数的合理性,为同类地层提供参考依据。Abstract: For heavily weathered fault breccia tunnel, advance support is prone to problems such as jamming and difficulty in forming holes, and tunnel excavation can easily cause tunnel face collapse, resulting in safety hazards. In order to solve the problem of advance construction in fault breccia tunnel, a successful application of self-propelled hollow grouting anchor rod advanced construction technology in Beijing Yudushan Tunnel was introduced, and the advantages of self-propelled hollow grouting anchor rod as advanced support in fault breccia tunnel instead of ordinary advanced small conduits was analyzed. It is concluded that a reasonable increase in the initial support strength of the fault breccia tunnel can inhibit the expansion of the plastic zone of the tunnel surrounding rock to enhance the stability of the surrounding rock. Combined with the field situation, the mechanical model of fault breccia tunnel was established to analyze the plastic zone of surrounding rock. The reasonable support parameters and grouting pressure for the self-propelled anchor rod were determined by test comparison. The reasonableness of these parameters was also verified based on the effect of the advanced support after excavation of the tunnel face, which provides a reference for similar strata.
-
Key words:
- advanced support /
- fault breccia /
- plastic zone /
- self-propelled anchor rod
-
表 1 自进式锚杆常用管径、长度表
序号 管径/mm 长度/m 壁厚/ mm 1 25 3 5 2 4 5 3 6 5 4 32 3 5 5 4 5 6 6 5 7 51 3 5 8 4 5 9 6 5 表 2 现场注浆浆液试验数据表
试验项目 浆液比重/(kg·l−1) 结实率/% 稠度/mm 初凝时间/h 试验数据 1.60 93 10.3 6.2 表 3 浆液实验数据规定标准
试验项目 浆液比重/(kg·l−1) 结实率/% 稠度/mm 初凝时间/h 试验数据 1.55~1.65 ≥90 9~11 6~8 -
[1] 何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002. [2] 崔 博. 自进式锚杆在隧道不良地质段施工中的应用[J]. 山西交通科技,2014,(6):71-73. [3] 张 航,彭雪峰,周 扬,等. 松散岩堆体地层下城市隧道洞口段施工方案变更合理性研究[J]. 隧道建设(中英文),2021,41(S1):265-275. [4] 史东志,王建光,乌呢日. 自进式锚杆在松散堆积体隧道施工中的应用[J]. 铁道勘察,2014,40(3):79-81. doi: 10.3969/j.issn.1672-7479.2014.03.025 [5] 杜明国. 自进式锚杆超前短管棚施工技术[J]. 铁道标准设计,2005,(7):83-84. doi: 10.3969/j.issn.1004-2954.2005.07.030 [6] 罗建兴. 自进式锚杆在隧洞塌方处理中的应用[J]. 甘肃水利水电技术,2011,47(2):54-55. [7] 杨文平,郁存正,张根法. 自进式中空注浆锚杆在软弱围岩中的应用[J]. 四川建筑,2006,(6):74-75. doi: 10.3969/j.issn.1007-8983.2006.06.028 [8] 魏文阳. 无工作室长管棚与自进式锚杆组合处治隧道洞顶塌陷分析[J]. 中外公路,2021,41(3):246-250. [9] 周 杰. 自进式锚杆在玄武岩松散堆积体隧道中的应用[J]. 工程技术研究,2020,5(24):82-83. doi: 10.3969/j.issn.1671-3818.2020.24.037 [10] 何玉龙. 双层自进式锚杆在碎石堆积体隧道中的应用[J]. 公路,2019,64(1):295-299. [11] 张利娜,李晋宝. 自进式中空注浆锚杆在砾岩层中的应用[J]. 市政技术,2011,29(5):99-101. doi: 10.3969/j.issn.1009-7767.2011.05.041 [12] 陈二平. 自进式锚杆在隧道超前支护中的应用[J]. 价值工程,2014,33(10):143-145. [13] JTG/T 3660—2020 公路隧道施工技术规范[S]. 北京: 人民交通出版社, 2020. [14] 邹胜勇,傅菁俊,寿忠华. 自进式中空注浆锚杆在隧道围岩支护中的应用[J]. 浙江交通职业技术学院学报,2010,11(1):17-19. doi: 10.3969/j.issn.1671-234x.2010.01.005 [15] 张继华,王连国,朱双双,等. 松散软岩巷道围岩塑性区扩展分析及支护实践[J]. 采矿与安全工程学报,2015,32(3):433-438.