Design and Application of Top-down Construction Method Pier Type Retaining Wall in Soil-rock Combined Deep Foundation Pit Support
-
摘要: 在山区河漫滩地段,常遇到上部土层相对较薄、强度较低,而下伏基岩强度高、厚度大且分布稳定的地质情况。在该类地质情况下开挖深基坑,当基坑周围环境复杂、放坡空间有限时,采用传统的排桩体系施工难度大、造价高;嵌固深度较浅的“吊脚桩”支护体系也经常由于桩体中上部拉锚受阻而失去适用性。为解决上述问题,结合鄂西北土岩结合深基坑支护经验,提出一种逆作法墩式挡墙支护的设计、施工方法。工程实践表明,逆作法墩式挡墙对此类土岩结合深基坑的适用性较好,计算理论清晰,且具有施工便利、造价经济等显著优势。相关成果可为类似深基坑工程提供技术参考。Abstract: In the floodplain area of mountainous areas, the upper soil layer is relatively thin and low in strength, while the underlying bedrock has high strength, thick thickness and stable distribution. Excavation of deep foundation pits under such geological conditions, when the surrounding environment of the foundation pit is complicated and the space for grading is limited, it is difficult and expensive to use the traditional pile row system to construct; and the supporting system of "hanging foot pile" with shallow embedded depth often loses its applicability due to the blocking of anchor pulling in the middle and upper part of the pile. In order to solve the above problems, combining the experience of deep foundation pit support combined with soil and rock in northwest Hubei, a design and construction method of top-down pier type retaining wall support is proposed. The engineering practice shows that the calculation theory of the top-down pier type retaining wall is clear, and it has obvious advantages such as convenient construction and economical cost. Relevant results can provide important technical reference for similar deep foundation pit engineering.
-
表 1 基坑边坡支护参数一览表
地层编号 地层名称 重度γ/(kN·m−3) 黏聚力c/kPa 内摩擦角φ/(°) 岩土层与锚固体极限黏结强度标准值ƒrbk/kPa 基底摩擦系数μ ① 素填土 20 5 22 40 0.4 ② 砂卵石 21.5 0 32 70 0.45 ③-1 强风化片岩 25 40 20 160 0.5 ③-2 中等风化片岩 26 70 22 360 0.57 ③-3 微风化片岩 26 90 25 560 0.57 -
[1] 陈志伟. 基坑围护结构吊脚桩施工处理实例[J]. 广东土木与建筑,2005,(6):5-6. [2] 陈俊生, 莫海鸿, 刘叔灼, 等. 某基坑工程施工方案可行性分析[C]. 三亚: 中国岩石力学与工程实例第一届学术会议, 2007. [3] 刘红军,李 东,张永达,等. 加锚双排桩与“吊脚桩”基坑支护结构数值分析[J]. 岩土工程学报,2008,30(S1):225-230. [4] 刘红军,李 东,孙 涛,等. 二元结构岩土基坑“吊脚桩”支护设计数值分析[J]. 土木建筑与环境工程,2009,31(5):43-48. [5] 刘红军,王亚军,姜德鸿,等. 土岩组合双排吊脚桩桩锚支护基坑变形数值分析[J]. 岩石力学与工程学报,2011,30(S2):4099-4103. [6] 吴 腾. 土岩二元结构盖挖法地铁车站深基坑“吊脚桩”支护体系数值分析[D]. 青岛: 中国海洋大学, 2014. [7] 李洪晓. 土岩组合地层深基坑“吊脚桩”支护体系变形规律及稳定性研究[D]. 广州: 广州大学, 2020. [8] 毕经东,张自光. “吊脚桩”支护型式应用及计算方法分析[J]. 石家庄铁路职业技术学院学报,2013,12(1):28-32. doi: 10.3969/j.issn.1673-1816.2013.01.008 [9] 赵文强. 上软下硬复合地层条件下深基坑支护设计探析[J]. 隧道建设,2014,34(2):153-157. [10] 岳建国,齐云龙. 深基坑吊脚桩的理论计算及数值模拟研究[J]. 路基工程,2016,(1):96-101. [11] 刘 江. 土岩组合地层盖挖车站基坑吊脚桩支护适用性研究[J]. 铁道建筑,2016,(5):120-125. doi: 10.3969/j.issn.1003-1995.2016.05.27 [12] 郭鹏举. 吊脚桩在地铁围护结构中的应用及注意事项为以徐州某地铁基坑为例[J]. 工程建设与设计,2019,(18):76-77. [13] 郑颖人. 边坡与滑坡工程治理[M]. 北京: 人民交通出版社, 2010. [14] GB 50330—2013 建筑边坡工程技术规范[S]. 北京: 中国建筑工业出版社, 2011.