Influence of Tunnel Excavation on Valley Slope Deformation and Mechanical Characteristics of Lining Structure
-
摘要: 某公路隧道洞口穿越黄土沟谷,受沟谷地形影响,该隧道为典型的偏压双孔隧道。基于沟谷地形地貌、隧道分布情况、黄土地层及隧道结构物理力学参数建立有限元数值计算模型,采用强度折减法分析左洞(埋深大)先行方案与右洞(埋深小)先行方案对沟谷坡体稳定性的影响,进一步研究不同施工方案下隧道衬砌结构受力特性。研究结果表明,左洞开挖对坡体滑动面及塑性区影响较大,并对坡脚位移的影响程度最大;隧道开挖先行洞的衬砌结构受力较大,左洞先行方案对衬砌影响程度大于右洞先行方案,但左洞先行方案对坡体稳定性有利。据此,建议该偏压隧道采用左洞(埋深大)先行方案,以减小隧道开挖对坡体的扰动,同时根据衬砌结构内侧受力薄弱点分布规律加强左、右洞衬砌设计。Abstract: Based on the topography of the loess tunnel entrance through the valley, the finite element numerical calculation model was established, and the strength reduction method was used to analyze the influence of the left tunnel and the right tunnel on the stability of the valley slope, and the mechanical characteristics of tunnel lining structures under different construction schemes were further studied. The research results show that in the two construction schemes, the left tunnel excavation has a greater impact on the sliding surface and plastic zone of the slope, and has the greatest impact on the displacement of the slope toe. In addition, the tunnel excavation makes the lining structure of the leading hole more stressed, and the left tunnel excavation has a greater impact on the lining than the right tunnel excavation, but the left tunnel excavation is beneficial to the slope stability. Therefore, left tunnel excavation should be adopted in this type of unsymmetrial loading tunnel to reduce the disturbance to the slope by the tunnel excavation. At the same time, the design of the left and right tunnel lining should be strengthen according to the distribution pattern of the weak points on the inner side of the lining structure.
-
表 1 坡体强度折减参数
折减系数 内摩擦角/(°) 黏聚力/kPa 0.50 63.4 100 0.75 53.1 66.7 1.00 45.0 50 1.25 38.7 40 1.50 33.7 33.3 1.75 29.7 28.6 2.00 26.6 25 表 2 材料的物理力学参数
材料 重度
/(kN·m–3)弹性
模量
/MPa水平
土压力
系数黏聚力
/kPa内摩擦
角/(°)泊松比 黄土 17 28 0.5 50 45 0.40 C30钢筋衬砌混凝土 27 31000 0.38 -
[1] 方梁正,王永东,胡 强,等. 隧道穿越沟谷浅埋地段的施工方法探讨[J]. 筑路机械与施工机械化,2017,34(3):86-90. doi: 10.3969/j.issn.1000-033X.2017.03.014 [2] 陈平奥,李树林. 浅埋偏压型隧道洞口进洞技术与应用[J]. 交通科技,2021,(3):104-109. doi: 10.3963/j.issn.1671-7570.2021.03.024 [3] 卢光兆,周 博,徐 锋,等. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报(工学版),2021,51(4):61-70. [4] 刘天宇. 浅埋偏压隧道围岩稳定性数值分析研究[J]. 山西建筑,2013,39(3):150-152. doi: 10.3969/j.issn.1009-6825.2013.03.084 [5] 马杲宇,陈子全,杨文波,等. 浅埋偏压隧道穿越松散堆积体支护结构受力特性分析[J]. 路基工程,2019,(4):20-26. [6] 何一林,郭正祥,赵高锦,等. 高速公路浅埋偏压隧道变形特性研究[J]. 云南水力发电,2021,37(4):89-92. [7] 李 扬,费维水,刘文连,等. 浅埋偏压双孔隧道开挖顺序优化研究[J]. 交通科学与工程,2021,37(1):82-88. doi: 10.3969/j.issn.1674-599X.2021.01.012 [8] 刘小军,张永兴. 浅埋偏压隧道洞口段合理开挖工序及受力特征分析[J]. 岩石力学与工程学报,2011,30(S1):3066-3073. [9] 潘文韬,吴枋胤,何 川,等. 浅埋偏压隧道施工工法研究与非对称设计优化[J]. 隧道建设(中英文),2021,41(S1):352-361. [10] 张 浩. 孔家坪隧道穿越沟谷浅埋段施工技术[J]. 科技资讯,2012,(18):54-55. [11] 杨 帆. 高速公路偏压隧道洞口偏压段实时监测模型分析[J]. 西部交通科技,2021,(8):163-167. [12] 冯冀蒙,蒋 辉,丁晓琦,等. 并行双洞隧道穿越滑坡工程研究进展与挑战[J]. 现代隧道技术,2021,58(6):1-10. [13] 李荣建,李浩泽,白维仕,等. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治,2021,3(4):1-8. [14] 万建国,张 政,阳德志. 浅埋偏压公路隧道衬砌裂损病害统计及成因反演分析[J]. 中外公路,2021,41(3):241-245. [15] 张治国,毛敏东,赵其华,等. 隧道–滑坡相互作用影响及控制防护技术研究现状与展望[J]. 岩土力学,2021,42(11):3101-3125.