留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温后预制裂纹花岗岩损伤特性研究

王伏春 黄守国 黄聪

王伏春, 黄守国, 黄聪. 高温后预制裂纹花岗岩损伤特性研究[J]. 岩土工程技术, 2023, 37(4): 415-421. doi: 10.3969/j.issn.1007-2993.2023.04.007
引用本文: 王伏春, 黄守国, 黄聪. 高温后预制裂纹花岗岩损伤特性研究[J]. 岩土工程技术, 2023, 37(4): 415-421. doi: 10.3969/j.issn.1007-2993.2023.04.007
Wang Fuchun, Huang Shouguo, Huang Cong. Damage Characteristics of Prefabricated Fractured Granite after High Temperature[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 415-421. doi: 10.3969/j.issn.1007-2993.2023.04.007
Citation: Wang Fuchun, Huang Shouguo, Huang Cong. Damage Characteristics of Prefabricated Fractured Granite after High Temperature[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 415-421. doi: 10.3969/j.issn.1007-2993.2023.04.007

高温后预制裂纹花岗岩损伤特性研究

doi: 10.3969/j.issn.1007-2993.2023.04.007
详细信息
    作者简介:

    王伏春,男,1980年生,汉族,江西遂川人,硕士,高级工程师,主要从事岩土工程勘察、设计、施工。E-mail:1542852877@qq.com

  • 中图分类号: TU 452

Damage Characteristics of Prefabricated Fractured Granite after High Temperature

  • 摘要: 温度是影响岩石物理力学性质的重要因素之一。研究高温对岩石力学性质演变规律及损伤破坏机制的影响,对深部岩体工程具有重要意义。基于PFC颗粒流数值模拟方法,建立了含预制裂纹花岗岩数值模型,模拟了不同温度(20 ℃,200 ℃,400 ℃,600 ℃,800 ℃)处理后含预制裂纹花岗岩单轴压缩试验。研究结果表明,含预制裂纹花岗岩的峰值强度和弹性模量随着热处理温度的升高显著降低,而峰值应变呈现增加趋势;不同热处理温度造成的热损伤程度不同,导致预制裂纹花岗岩宏观破坏模式存在差异;热处理温度不超过600 ℃时,花岗岩均沿着预制裂纹两端发生破坏;当热处理温度达到800 ℃,热损伤成为花岗岩力学破坏模式的主导因素,且破碎程度显著增加。研究成果有助于了解高温作用下的岩石损伤演化机理,可为深部地下工程提供借鉴。

     

  • 图  1  花岗岩试验样品与数值模型

    图  2  试验结果与数值模拟结果

    图  3  升温过程示意图

    图  4  不同温度水平下的应力–应变曲线

    图  5  不同温度水平下峰值应力、峰值应变及弹性模量变化

    图  6  花岗岩数值模型的破坏模式

    图  7  模型不同阶段应力分布与微裂纹分布图

    图  8  热致微裂纹数目随加热温度的变化

    图  9  不同温度处理后热裂纹分布及数量

    表  1  模型细观物理力学参数

    颗粒密度
    /(kg·m−3)
    颗粒模量
    /GPa
    颗粒摩擦
    因数
    平行黏结
    模量/GPa
    平行黏结
    刚度比
    法向强度
    /MPa
    切向强度
    /MPa
    摩擦
    系数
    27302.300.452.302.011.015.00.45
    下载: 导出CSV

    表  2  模型热物性参数

    热导率
    /(W·m−1·K−1)
    比热
    /(J·kg−1·K−1)
    石英
    热膨胀
    系数/K−1
    钠长石
    热膨胀
    系数/K−1
    白云母
    热膨胀
    系数/K−1
    3.5101524.314.13.0
    下载: 导出CSV
  • [1] MARDOUKHI A,MARDOUKHI Y,HOKKA M,et al. Effects of heat shock on the dynamic tensile behavior of granitic rocks[J]. Rock Mechanics and Rock Engineering,2017,50(5):1171-1182. doi: 10.1007/s00603-017-1168-4
    [2] EDOARDO R,KANT M A,CLAUDIO M,et al. The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method[J]. Rock Mechanics and Rock Engineering,2018,51(9):2957-2964. doi: 10.1007/s00603-018-1507-0
    [3] YANG S Q,HU B. Creep and longterm permeability of a red sandstone subjected to cyclic loading after thermal treatments[J]. Rock Mechanics and Rock Engineering,2018,51:2981-3004. doi: 10.1007/s00603-018-1528-8
    [4] 方新宇,许金余,刘 石,等. 高温后花岗岩的劈裂试验及热损伤特性研究[J]. 岩石力学与工程学报,2016,35(S1):2687-2694. doi: 10.13722/j.cnki.jrme.2014.1631
    [5] BAISCH S,WEIDLER R,VÖRÖS R,et al. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin[J]. Bulletin of the Seismological Society of America,2006,96(6):2242-2256. doi: 10.1785/0120050255
    [6] 郤保平,吴阳春,王 帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69-83. doi: 10.13722/j.cnki.jrme.2019.0182
    [7] 张志镇,高 峰,徐小丽. 花岗岩力学特性的温度效应试验研究[J]. 岩土力学,2011,32(8):2346-2352. doi: 10.3969/j.issn.1000-7598.2011.08.017
    [8] 郭平业,卜墨华,李清波,等. 岩石有效热导率精准测量及表征模型研究进展[J]. 岩石力学与工程学报,2020,39(10):1983-2013.
    [9] JANSEN D P,CARLSON S R,YOUNG R P,et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research:Solid Earth,1993,98(B12):22231-22243. doi: 10.1029/93JB01816
    [10] ZHAO Y S,MENG Q R,KANG T H,et al. Micro-CT experimental technology and micro-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27:28-34.
    [11] CHEN S,YANG C,WANG G. Evolution of thermal damage and permeability of Beishan granite[J]. Applied Thermal Engineering,2017,110:1533-1542. doi: 10.1016/j.applthermaleng.2016.09.075
    [12] SUN Q,ZHANG W,XUE L,et al. Thermal damage pattern and thresholdsof granite[J]. Environmental Earth Sciences,2015,74(3):2341-2349. doi: 10.1007/s12665-015-4234-9
    [13] YANG S Q,RANJITH P G,JING H W,et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics,2017,65:180-197. doi: 10.1016/j.geothermics.2016.09.008
    [14] CHEN Y L,NI J,SHAO W,et al. Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading[J]. International Journal of Rock Mechanics & Mining Sciences,2012,56(15):62-66.
    [15] ZHAO Z H,XU H R,WANG J,et al. Auxetic behavior of Beishan granite after thermal treatment: A microcracking perspective[J]. Engineering Fracture Mechanics,2020,231:101017.
    [16] SUN W,WU S C,XU X. Mechanical behavior of Lac du Bonnet granite after high-temperature treatment using bonded-particle model and moment tensor[J]. Computers and Geotechnics,2021,135:104132. doi: 10.1016/j.compgeo.2021.104132
    [17] 周 喻,吴顺川,许学良,等. 岩石破裂过程中声发射特性的颗粒流分析[J]. 岩石力学与工程学报,2013,32(5):951-959.
    [18] 宿 辉,朱 谊,刘世伟,等. 基于颗粒流热固耦合模型的片麻花岗岩损伤特性分析[J]. 科学技术与工程,2020,20(5):2009-2013. doi: 10.3969/j.issn.1671-1815.2020.05.045
    [19] LI M,LIU X. Effect of thermal treatment on the physical and mechanical properties of sandstone: insights from experiments and simulations[J]. Rock Mechanics and Rock Engineering,2022,55:3171-3194. doi: 10.1007/s00603-022-02791-1
    [20] HUANG Y H,YANG S Q,BU Y S. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2020,106(2):102-474.
    [21] ZHAO Z H,LIU Z N,PU H,et al. Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions[J]. Rock Mechanics and Rock Engineering,2018,51(4):1293-1303. doi: 10.1007/s00603-018-1404-6
    [22] SHI C,YANG W K,YANG J X,et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter,2019,21(2):38-51. doi: 10.1007/s10035-019-0889-3
    [23] ZHAO Z H. Thermal influence on mechanical properties of granite: A microcracking perspective[J]. Rock Mechanics and Rock Engineering,2016,49(11):747-762.
    [24] SAKA B L,RANJITH P G,RATHNAWEERA T D,et al. Quantification of thermally-induced microcracks in granite using X-ray CT imaging and analysis[J]. Geothermics,2019,81(11):152-167.
    [25] TIAN W L,YANG S Q,WANG J G,et al. Numerical simulation of permeability evolution in granite after thermaltreatment[J]. Computers and Geotechnics,2020,126(14):103-705.
    [26] YANG S Q,TIAN W L,ELSWORTH D,et al. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53(11):4403-4427.
    [27] LI Q,YIN T B,LI X B,et al. Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling[J]. Bulletin of Engineering Geology and the Environment,2020,79(2):313-327.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  18
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 刊出日期:  2023-08-08

目录

    /

    返回文章
    返回