Experimental Study on Dry Shrinkage Cracks of Expansive Soil Modified by Polypropylene Fiber
-
摘要: 为了更好地探究聚丙烯纤维对膨胀土干缩裂隙的抑制作用,在相同的蒸发温度下分别从定性和定量两个方面对有纤维和无纤维的膨胀土表面裂纹发展、演变和特征进行分析。研究结果表明,水分蒸发过程中聚丙烯纤维对膨胀土的裂缝有显著的抑制作用,而在干缩裂缝形成过程中裂缝数量与裂缝接缝的比值
$ \mathrm{\gamma } $ 能够反映裂缝的穿透程度,其值越小,裂缝的穿透程度越强。这种物理改良方式能够使聚丙烯纤维与膨胀土连接成为整体,进而将干缩应力扩散到膨胀土中,有效减缓其裂缝发展的速度。研究成果可在干缩裂隙膨胀土地区路基处理中推广应用。Abstract: To explore the inhibition effect of polypropylene fiber on shrinkage cracks of expansive soil, the development, evolution and characteristics of surface cracks of expansive soil samples with and without fibers were qualitatively described and quantitatively analyzed at the same evaporation temperature. The results show that the polypropylene fiber has a significant inhibition effect on the cracks of expansive soil during the process of water evaporation, and the ratio γ of the number of cracks to the joint of cracks can reflect the penetration degree of cracks. The smaller the value, the stronger the penetration degree of cracks. This physical improvement method can make the polypropylene fiber connect with expansive soil as a whole, and then spread the dry shrinkage stress into expansive soil, effectively slowing down the speed of crack development, so the results can be generalized and applied in the treatment of roadbed in the area of dry shrinkage crack expansive soil.-
Key words:
- expansive soil /
- dry shrinkage crack /
- polypropylene fiber
-
表 1 膨胀土基本物理性质指标
最优含水率
$ w$/%最大干密度
$ρ$/(g·cm−3)塑性指数
$ I_\mathrm{p} $自由膨胀率
$ F_\mathrm{s} $/%18 1.70 17.3 58 表 2 聚丙烯纤维基本物理性质指标
平均直径
/μm平均长度
/mm平均拉伸强度
/MPa平均拉伸模量
/GPa平均断裂伸率
/%45 17 825 16 17.5 表 3 不同膨胀土试样裂隙数、裂隙节点数和比值(60 ℃)
试样编号 裂隙数 裂隙节点数 比值 N1 36 37 0.97 F1 50 47 1.06 F2 53 49 1.08 F3 75 68 1.10 F4 88 72 1.21 F5 92 75 1.23 F6 112 81 1.38 F7 125 87 1.43 -
[1] 王艳芳,刘传新,梁 波,等. 土壤稳定剂–聚丙烯纤维复合改良膨胀土的试验研究[J]. 水利水运工程学报,2022,(6):86-94. doi: 10.12170/20220221001 [2] 李国群. 膨胀土路基施工[J]. 交通世界(建养. 机械),2010,(5):136-137. [3] 杜泽丽. 干湿循环条件下膨胀土的力学性质与开裂行为[J]. 水电能源科学,2020,38(11):141-144. [4] 张 震,林宇亮,何红忠,等. 膨胀土边坡的失稳特征与稳定性分析[J]. 中南大学学报(自然科学版),2022,53(1):104-113. [5] 梅智鹏. 植物根系对膨胀土干缩裂隙抑制模拟试验研究[D]. 长沙: 长沙理工大学, 2019. [6] 郝建斌, 张 焕, 李耕春, 等. 粉煤灰–剑麻纤维复合改良膨胀土强度及裂隙发育特性[J/OL]. 铁道科学与工程学报: 1-9 [2022-07-24]. [7] 黎 伟,刘观仕,姚 婷. 膨胀土裂隙特征研究进展[J]. 水利水电科技进展,2012,32(4):78-82. [8] 韦秉旭,刘 斌,欧阳运清,等. 干湿循环作用对膨胀土结构性的影响及其导致的强度变化[J]. 工业建筑,2015,45(8):99-103. [9] JULINA M ,THYAGARAJ T. Effect of hydraulic gradient on swell and hydraulic response of desiccated expansive soil – an experimental study[J]. International Journal of Geotechnical Engineering,2021:1-14. [10] 曾 浩,唐朝生,林 銮,等. 土体干缩裂隙发育方向及演化特征的层间摩擦效应研究[J]. 岩土工程学报,2019,41(6):1172-1180. doi: 10.11779/CJGE201906023 [11] 章君政,唐朝生,巩学鹏,等. 基于高密度电阻率法的土体干缩裂隙动态发育过程精细监测研究[J]. 岩土力学,2023,44(2):392-402. [12] 张守林,杨健新. 膨胀土地区路基设计问题探讨[J]. 交通世界,2021,(22):118-119. [13] 郭 鸿,马帅帅,王 普,等. 土工格栅抑制黄土干缩裂隙试验分析[J]. 水资源与水工程学报,2020,31(4):118-123. [14] 黄 震,韦秉旭,刘 雄,等. 压实膨胀土表面裂隙参数之间的关系分析[J]. 兰州工业学院学报,2014,21(3):16-20. [15] 唐朝生,王德银,施 斌,等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报,2013,35(12):2298-2305.