Underground Pipe Network and Road Disease Monitoring Technology Based on DVS
-
摘要: 针对常规探测方法在地下管线泄露与道路空洞监测方面存在成果精准度不高、应用效果不足、无法实现自动化等问题,提出借助分布式光纤振动传感技术对地下管网及道路病害进行监测,研发一种能实时智能监测地下管网运维状态及道路路基、周边土质病害变化的技术方法。通过试验进行验证,对前端光纤设备自动采集周围的信号及背景噪声进行分析,提高探查地下管网及道路病害的监测效率和准确率。试验结果表明,该方法对地下管线泄露与道路病害的整体识别率达90%以上,达到满足地下管网及道路养护、预防事故发生的需求。Abstract: Because of the problems of low accuracy, insufficient application effect and inability to realize automation in the monitoring of underground pipeline leakage and road voids by conventional detection methods, distributed optical fiber vibration sensing technology is proposed to monitor underground pipe networks and road diseases. A technology method for real-time intelligent monitoring of underground pipe network operation and maintenance status and changes of road subgrade and surrounding soil diseases is developed. Through the test verification, the signal and background noise automatically collected by the front-end optical fiber equipment were analyzed, and the monitoring efficiency and accuracy of the underground pipe network and road disease were improved. The results show that the overall recognition rate of this method for underground pipeline leakage and road diseases is over 90%, meeting the needs of underground pipeline networks and road maintenance and accident prevention.
-
表 1 试验内容
试验分类 试验内容 光纤敷设方式 训练试验 非破损管道上方地面定点敲击; 管道泄露实验每组均缠绕式、内直铺式各采集一次;
道路空洞实验光纤敷设在地面及土体中各采集一次破损管道上方地面定点敲击; 道路空洞上方地面定点敲击 验证试验 破损管道的非破损处上方地面定点敲击; 道路空洞正上方偏移2 m处敲击 补充试验 破损管道破损处上方横向偏移2 m处敲击; 没有任何动作时的背景噪音 表 2 LeNet-5模型准确率分析结果
实验名称 无噪声组 有噪声组 缠绕 穿管 缠绕+穿管 缠绕 穿管 缠绕+穿管 无干扰 0.95 0.88 0.89 0.96 0.93 0.91 有干扰 0.93 0.90 0.80 0.94 0.91 0.84 混合 0.94 0.87 0.81 0.94 0.89 0.86 -
[1] 刘忠广. 地下管线探测与智慧排水系统建设[D]. 青岛: 山东科技大学, 2019. [2] 王德洋, 朱鸿鹄, 吴海颖, 等. 地层塌陷作用下埋地管道光纤监测试验研究[J]. 岩土工程学报,2020,42(6):1125-1131. [3] 王子恒, 景 洪. 分布式光纤声波传感的管道泄漏监测指标分析[J]. 中国仪器仪表,2021(8):61-65. [4] 曾梓棋, 柳 力. 光纤传感技术在道路内部病害监测中的应用[J]. 中国高新科技,2020(24):148-149. [5] 王甫强, 张占彪, 李 虎, 等. 光纤传感技术在岩溶地面塌陷地质灾害监测中的应用[J]. 城市勘测,2021(4):174-178. doi: 10.3969/j.issn.1672-8262.2021.04.041 [6] 龙志辉, 张海波. 光纤传感技术的桥梁结构检测分析[J]. 运输经理世界, 2022(31):104-106. [7] 陈 果. 光纤传感在桥梁健康监测系统中的应用[J]. 黑龙江交通科技,2021,44(9):250-251. [8] 刘玉涛. 基于分布式光纤传感技术的新旧路基沉降变形监测研究[D]. 南京: 南京航空航天大学, 2014. [9] 孙启昌. 分布式光纤在管道泄漏检测中的应用[J]. 石油化工自动化,2011,47(5):4. [10] LI M, FENG X, HAN Y. Brillouin fiber optic sensors and mobile augmented reality-based digital twins for quantitative safety assessment of underground pipelines[J]. Automation in Construction,2022,144:104617. doi: 10.1016/j.autcon.2022.104617 [11] 田俊杰. 基于分布式光纤传感技术的城市道路挖掘智能监控系统[J]. 科技与创新,2018(21):49-53. [12] 刘泽龙, 李素贞, 张 祎. 埋地管道光纤周界振动监测与预警技术[J]. 振动、测试与诊断,2022,42(3):593-599. [13] 王 梦, 孔 勇, 吴 虎, 等. 基于高稳定性的PGC解调算法研究[J]. 激光技术,2022,46(4):545-550. doi: 10.7510/jgjs.issn.1001-3806.2022.04.017 [14] 郑 丁, 朱明斯, 云 麟, 等. 基于DVS的振动源与传感通道垂直距离的计算方法[J]. 光通信技术,2019,43(11):14-17. [15] 王超群. 通信光缆安全监测中DAS信号识别方法研究[D]. 成都: 电子科技大学, 2021. [16] 王 磊, 李永倩, 张立欣, 等. φ -OTDR系统中的相位解调方法研究进展[J]. 激光技术, 2019, 43(1):6. [17] FANG G, XU T, FENG S, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology,2015,33(13):2811-2816. doi: 10.1109/JLT.2015.2414416 [18] 孙 韦, 于 淼, 常天英, 等. 相位生成载波解调方法的研究[J]. 光子学报,2018,47(8):221-228. [19] 赵 亚. 基于分布式光纤拉曼测温的自来水管道泄漏检测与定位研究[D]. 杭州: 中国计量大学, 2019. [20] QIN Z, CHEN H, CHANG J. Signal-to-Noise ratio enhancement based on empirical mode decomposition in phase-sensitive optical time domain reflectometry systems[J]. Sensors,2017,17(8):1870. doi: 10.3390/s17081870