Sandstone Damage and Creep Acoustic Emission under Salt Water Dry-wet Cycle
-
摘要: 为研究水化学溶液作用下红砂岩的损伤劣化机制,在Na2SO4溶液和NaOH 溶液两种盐溶液环境下进行了干湿循环试验和蠕变声发射试验。结果表明:红砂岩的初始损伤随着干湿循环次数的增加而逐渐累积,砂岩在酸性Na2SO4溶液中的损伤劣化程度大于在NaOH溶液中的损伤劣化程度;随着干湿循环次数的增大,砂岩的初始损伤越来越严重,蠕变声发射信号逐渐从高频高幅值向低频低幅值转变,声发射累计事件数逐渐减小;相同干湿循环次数下,Na2SO4溶液中砂岩的声发射累计事件数低于NaOH溶液中砂岩的声发射累计事件数;声发射b值呈“降低—动态稳定—突降—增大”四个变化阶段,突降出现在加速蠕变阶段前后,可作为砂岩即将发生蠕变失稳破坏的前兆;声发射b值随着干湿循环次数的增加而逐渐增大,水化学损伤软化现象越严重,蠕变过程中小尺度的破坏占比越大。Abstract: To study the damage and deterioration mechanism of red sandstone under the action of aqueous chemical solution, a dry-wet cycle test and creep acoustic emission test were carried out in Na2SO4 solution and NaOH solution. The results showed that the damage of red sandstone gradually accumulates with the increase of dry-wet cycle times, and the damage deterioration degree of sandstone in acid Na2SO4 solution is greater than that in NaOH solution. With the increase of dry-wet cycles, the softening damage of sandstone is becoming increasingly severe, the creep acoustic emission signal gradually changes from "high frequency and high amplitude" to "low frequency and low amplitude", and the cumulative number of acoustic emission events gradually decreases. Under the same dry-wet cycle times, the cumulative number of acoustic emission events of sandstone in Na2SO4 solution is lower than that in NaOH solution. The acoustic emission b value shows four stages of "decrease - dynamic stability - sudden drop - increase". The sudden drop occurs before and after the accelerated creep stage, which can be used as a precursor of creep instability failure of sandstone. The b value of acoustic emission gradually increases with the increase of dry-wet cycles. The more serious the hydrochemical damage softening phenomenon is, the greater the proportion of small-scale damage in the creep process.
-
Key words:
- red sandstone /
- chemical solution /
- dry-wet cycle /
- creep /
- acoustic emission /
- damage /
- b value
-
表 1 干湿循环试验方案
试验组 pH 干湿循环/次 对照组 0 Na2SO4 3 5 10 20 NaOH 12 5 10 20 表 2 单轴压缩试验结果
试验组 干湿循环/次 单轴抗压强度/MPa 弹性模量/GPa 对照组 0 84 12.1 Na2SO4 5 72 11.3 10 60 8.8 20 45 7.0 NaOH 5 75 11.4 10 64 9.4 20 48 7.6 -
[1] PAN J L, CAI M F, LI P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression[J]. Journal of Central South University,2022,29(2):486-498. doi: 10.1007/s11771-022-4949-1 [2] 刘 帅, 杨更社, 董西好. 干湿循环对红砂岩力学特性及损伤影响试验研究[J]. 煤炭科学技术,2019,47(4):101-106. [3] 马芹永, 郁培阳, 袁 璞. 干湿循环对深部粉砂岩蠕变特性影响的试验研究[J]. 岩石力学与工程学报,2018,37(3):593-600. [4] 王来贵, 丁盛鹏, 安文博, 等. 不同溶液环境下砂岩干湿循环损伤特性试验研究[J]. 实验力学,2020,35(3):521-531. [5] 韩铁林, 师俊平, 陈蕴生. 化学腐蚀和干湿循环作用下砂岩Ⅰ型断裂韧度及其强度参数相关性的研究[J]. 水利学报,2018,49(10):1265-1275. [6] 刘新荣, 袁 文, 傅 晏, 等. 化学溶液和干湿循环作用下砂岩抗剪强度劣化试验及化学热力学分析[J]. 岩石力学与工程学报,2016,35(12):2534-2541. [7] 付建军, 董正东, 杨艳霜, 等. 不同水岩作用下砂岩的力学参数演化特征[J]. 沈阳工业大学学报,2020,42(3):350-354. [8] 陈绪新, 付厚利, 秦 哲, 等. 水化学作用及干湿循环对蚀变岩力学性质影响研究[J]. 矿业研究与开发,2017,37(1):98-102. [9] 孙治国, 鲁海涛. 水–岩化学腐蚀损伤作用下红砂岩蠕变特性试验研究[J]. 金属矿山,2021(4):83-89. [10] 张峰瑞, 姜谙男, 江宗斌, 等. 化学腐蚀–冻融综合作用下岩石损伤蠕变特性试验研究[J]. 岩土力学,2019,40(10):3879-3888. [11] 李达朗, 杨根兰, 鲁鲲鹏, 等. 干湿循环脆性红砂岩的孔隙及声发射特征研究[J]. 贵州大学学报(自然科学版),2020,37(2):79-85. [12] 宋朝阳, 纪洪广, 刘志强, 等. 干湿循环作用下弱胶结岩石声发射特征试验研究[J]. 采矿与安全工程学报,2019,36(4):812-819. [13] 宋朝阳, 纪洪广, 蒋 华, 等. 干湿循环作用下弱胶结砂岩声发射特征及其细观劣化机理[J]. 煤炭学报,2018,43(S1):96-103. [14] 龚 囱, 李长洪, 赵 奎. 红砂岩短时蠕变声发射b值特征[J]. 煤炭学报,2015,40(S1):85-92. [15] 龚 囱, 赵 坤, 於鑫佳, 等. 红砂岩蠕变声发射分形特征[J]. 金属矿山,2021(4):76-82. [16] 吴 春, 郭棋武, 洪 涛, 等. 基于超声检测的软岩单轴流变损伤试验[J]. 煤田地质与勘探,2017,45(5):105-111.