Impact of Ultrasound-assisted Complex Leaching on Engineering Properties of Contaminated Clay
-
摘要: 研究采用超声辅助复合淋洗剂(酒石酸、乙二胺四乙酸二钠(Na2EDTA)),对人工配制的Cu2+、Ni2+、Pb2+重金属污染黏土开展试验,分析了在不同重金属离子浓度下,超声辅助复合淋洗前后土体pH值、液塑限、强度特性、压缩特性等工程性质的变化规律。试验结果表明:(1)超声淋洗修复后,污染黏土pH值显著降低,酸性淋洗剂会带来较严重的土壤酸化;(2)修复后土体液性指数增加,塑性指数降低;(3)超声淋洗修复后,土体抗剪强度降低,内摩擦角整体降低2°~3°;(4)孔隙比随固结压力增大而减小,重金属浓度越大,降低幅度越大;(5)修复后土体的压缩性增大,压缩系数增加,压缩模量降低。Abstract: The ultrasonic-assisted complex leaching agents (tartaric acid and ethylenediaminetetraacetic acid disodium salt (Na2EDTA)) were employed to carry out experiments on contaminated clay containing heavy metals Cu2+, Ni2+, and Pb2+. The variation laws of engineering properties such as soil pH, liquid plastic limit, strength characteristics, and compression characteristics before and after ultrasonic-assisted complex leaching were scrutinized under different heavy metal ion concentrations. The results revealed: (1) Post ultrasonic-assisted complex leaching remediation, the pH value of the contaminated clay reduces significantly, with the acidic leaching agent inducing severe soil acidification. (2) Upon remediation, the soil's liquidity index increases while the plasticity index decreases. (3) After ultrasonic leaching remediation, the shear strength of the soil body reduces, with the overall internal friction angle decreasing by 2°~3°. (4) The porosity ratio decreases as consolidation pressure increases, with the reduction being more substantial the higher the heavy metal concentration. (5) Post-remediation, the compressibility of the soil body increases, as does the compression coefficient, while the modulus of compressibility diminishes.
-
Key words:
- ultrasonic-assisted /
- complex leaching /
- contaminated clay /
- engineering property
-
表 1 试验土样的物理性质指标
天然
含水率/%液限
/%塑限
/%液性
指数塑性
指数pH 土粒相
对密度最优含
水率/%33 44.3 10.4 0.68 34 7.68 2.74 18 表 2 污染土浓度
重金属离子浓度倍数 重金属离子浓度/(mg·kg−1) 铜Cu2+ 镍Ni2+ 铅Pb2+ 筛选值 2000 150 400 2 4000 300 800 6 12000 900 2400 8 16000 1200 3200 10 20000 1500 4000 -
[1] 钟 明, 万 云, 万 安, 等. 沙颍河流域沉积物重金属污染特征及生态风险评价[J]. 生态学杂志,2016,35(7):1857-1864. [2] 李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究,2019,32(12):1993-2000. [3] ZHAO Y, LI H, LI B, et al. Process design and validation of a new mixed eluent for leaching Cd, Cr, Pb, Cu, Ni, and Zn from heavy metal-polluted soil[J]. Analytical Methods,2021,13(10):1269-1277. doi: 10.1039/D0AY01978J [4] 陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报,2018,12(10):2845-2854. doi: 10.12030/j.cjee.201804192 [5] 叶朝军, 吴家胜, 钟 斌, 等. EDTA 和有机酸对毛竹修复重金属污染土壤的强化作用[J]. 浙江农林大学学报,2018,35(3):431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006 [6] HE Z, LONG L, YUAN H, et al. Remediation of heavy-metal-contaminated soil with two organic acids: Washing efficiency, recovery performance, and benefit analysis[J]. Journal of Cleaner Production,2023,393:136235. doi: 10.1016/j.jclepro.2023.136235 [7] 于艺彬, 李亦然, 高 柏, 等. 重金属土壤清洗技术研究进展[J]. 有色金属(冶炼部分),2021(3):129-137. [8] GLUHAR S, KAURIN A, LESTAN D. Soil washing with biodegradable chelating agents and EDTA: Technological feasibility, remediation efficiency and environmental sustainability[J]. Chemosphere,2020,257:127226. doi: 10.1016/j.chemosphere.2020.127226 [9] 孙浩然. 螯合剂淋洗修复土壤中As、Sb污染物实验研究[D]. 贵阳: 贵州大学, 2016. [10] 张瑞琪. 有机膦酸与辅助剂复合淋洗去除土壤重金属研究[D]. 成都: 四川农业大学, 2020. [11] 吕青松, 蒋煜峰, 杨 帆, 等. 重金属污染土壤淋洗技术研究进展[J]. 甘肃农业科技,2010(3):33-37. [12] 高一丹, 袁旭音, 汪宜敏, 等. 不同螯合剂对两类Cd和Ni污染土壤的淋洗修复对比[J]. 中国环境科学,2022,42(1):250-257. doi: 10.3969/j.issn.1000-6923.2022.01.027 [13] CHENG S, LIN Q, WANG Y, et al. The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids[J]. Arabian Journal of Chemistry,2020,13(4):5160-5170. doi: 10.1016/j.arabjc.2020.02.015 [14] 姚 苹, 郭 欣, 王亚婷, 等. 柠檬酸强化低浓度EDTA对成都平原农田土壤铅和镉的淋洗效率[J]. 农业环境科学学报,2018,37(3):448-455. doi: 10.11654/jaes.2017-1086 [15] HUANG K, SHEN Y, WANG X, et al. Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil[J]. Chemosphere,2021,279:130568. doi: 10.1016/j.chemosphere.2021.130568 [16] ZHU Z, WANG J, LIU X, et al. Comparative study on washing effects of different washing agents and conditions on heavy metal contaminated soil[J]. Surfaces and Interfaces,2021,27:101563. doi: 10.1016/j.surfin.2021.101563 [17] HE J, LIN Q, LUO Y, et al. Removal of arsenic from contaminated soils by combining tartaric acid with dithionite: An efficient composite washing agent[J]. Journal of Environmental Chemical Engineering,2023,11(3):109877. doi: 10.1016/j.jece.2023.109877 [18] 高 珂, 朱 荣, 邹 华, 等. 超声强化淋洗修复Pb、Cd、Cu复合污染土壤[J]. 环境工程学报,2018,12(8):2328-2337. doi: 10.12030/j.cjee.201801076 [19] NEGAHDAR A, NIKGHALBPOUR M. Geotechnical properties of sandy clayey soil contaminated with lead and zinc[J]. SN Applied Sciences,2020,2:1-13. doi: 10.1007/s42452-019-1685-8 [20] ZHA F, ZHU F, XU L, et al. Laboratory study of strength, leaching, and electrical resistivity characteristics of heavy-metal contaminated soil[J]. Environmental Earth Sciences,2021,80:1-11. doi: 10.1007/s12665-020-09327-2 [21] 王 平, 李江山, 薛 强. 淋洗剂乙二胺四乙酸对重金属污染土工程特性的影响[J]. 岩土力学,2014(4):1033-1040. [22] 邵 俐, 付 可. 有机酸淋洗修复复合重金属污染河道底泥研究[J]. 水利与建筑工程学报,2021,19(2):228-234. doi: 10.3969/j.issn.1672-1144.2021.02.039 [23] 薛凯喜, 周朝慧, 田兴华, 等. 竖向渗透分层取样技术在液塑限联合测定试验中的应用[J]. 长江科学院院报,2022,39(1):114-121. [24] ZHANG Z, CHEN Y, FANG J, et al. Study on shear behavior of kaolinite contaminated by heavy metal Cu (II)[J]. Environmental Science and Pollution Research,2019,26:13906-13913. doi: 10.1007/s11356-019-04627-y [25] MISSANA T, ALONSO U, GARCÍA-GUTIÉRREZ M. Evaluation of component additive modelling approach for europium adsorption on 2: 1 clays: Experimental, thermodynamic databases, and models[J]. Chemosphere,2021,272:129877. doi: 10.1016/j.chemosphere.2021.129877