Influence of Loading Conditions and Particle Size on Stick-Slip Characteristics of Granular Materials
-
摘要: 将自然断层中常见的黏结–滑移现象和颗粒材料特性相结合,采用玻璃珠颗粒材料开展室内直剪试验和离散元数值分析,通过改变法向应力、剪切速率以及颗粒粒径,探究了加载条件和粒径大小对颗粒材料黏结–滑移特征的影响。模型试验和数值模拟结果表明:玻璃珠颗粒在受剪状态下发生周期性黏结–滑移,摩擦愈合和黏结–滑移周期是表征颗粒黏结–滑移特性的关键参数;摩擦愈合随剪切速率的增大而减小,随颗粒粒径的增大而增大,而法向应力对摩擦愈合影响较小;黏结–滑移周期和摩擦愈合表现出正相关,黏结–滑移周期随剪切速率增大而明显减小;颗粒间的摩擦咬合作用是影响黏结–滑移行为的重要因素。Abstract: Combining the common bonding slip phenomena in natural faults with the characteristics of granular materials, indoor direct shear tests and discrete element numerical analysis using glass bead particles were conducted. By changing the normal stress, shear rate, and particle size, the influence of loading conditions and particle size on the stick-slip characteristics of granular materials were investigated. Model experiments and numerical simulations indicate that glass bead particles exhibit periodic stick-slip under shear conditions, and the frictional healing and stick-slip period are key parameters characterizing the stick-slip characteristics of particles. The frictional healing decreases with increasing shear rate and increases with increasing particle diameter, while the normal stress has a smaller impact on the frictional healing. Stick-slip period and frictional healing show a positive correlation, with the stick-slip period significantly decreasing with increasing shear rate. The frictional interlocking between particles is an important factor influencing stick-slip behavior.
-
Key words:
- stick-slip /
- particle /
- biaxial direct shear test /
- discrete element /
- friction
-
表 1 DEM主要参数
参数 值 颗粒密度ρ/(kg·m−3) 500 接触模量E/GPa 0.1 初始孔隙率Ppore 0.16 颗粒之间接触的摩擦系数μg 0.5 墙体刚度kw/GPa 1 接触的刚度比rk 1.5 时间步Δt/s 10−6 -
[1] BYERLEE J D, SUMMERS R. Stable sliding preceding stick-slip on fault surfaces in granite at high pressure[J]. Pure & Applied Geophysics,1975,113(1):63-68. [2] 王绳祖, 张 流. 剪切破裂与粘滑——浅源强震发震机制的研究[J]. 地震地质,1984(2):63-73. [3] 徐锡伟, 于贵华, 王 峰, 等. 1966年邢台地震群的发震构造模型—新生断层形成? 先存活断层摩擦粘滑?[J]. 中国地震,2000,16(4):15. [4] 邵同宾, 嵇少丞. 俯冲带地震诱发机制: 研究进展综述[J]. 地质论评,2015,61(2):245-268. [5] OKAZAKI K, KATAYAMA I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes[J]. Geophysical Research Letters,2015,42(4):1099-1104. doi: 10.1002/2014GL062735 [6] ADJEMIAN F, EVESQUE P, et al. Experimental study of stick-slip behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(6):501-530. doi: 10.1002/nag.350 [7] BRACE W F, BYERLEE J D. Stick-Slip as a Mechanism for Earthquakes[J]. Science, 1966, 153(3739): 990-992. [8] DIETERICH J H. Time-dependent friction and the mechanics of stick-slip[J]. Pure and Applied Geophysics,1978,116(4):790-806. [9] RUINA A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research Solid Earth,1983,88(B12):10359-10370. doi: 10.1029/JB088iB12p10359 [10] KARNER S L, MARONE C. Effects of Loading Rate and Normal Stress on Stress Drop and Stick‐Slip Recurrence Interval[M]. Washington DC: American Geophysical Union(AGU), 2000. [11] SCHAFF D P, BEROZA G C, SHAW B E. Postseismic response of repeating aftershocks[J]. Geophysical Research Letters,2013,25(24):4549-4552. [12] 宋义敏, 马少鹏, 杨小彬, 等. 断层黏滑动态变形过程的实验研究[J]. 地球物理学报,2012,55(1):171-179. doi: 10.6038/j.issn.0001-5733.2012.01.016 [13] 董 鹏, 夏开文, 郭彦双. 平直断层黏滑及动态破裂扩展的实验研究[J]. 岩石力学与工程学报,2018,37(A2):8. [14] 赵扬锋, 荆 刚, 樊 艺, 等. 断层黏滑失稳过程微震与电荷信号时频特征研究[J]. 岩石力学与工程学报,2020,39(7):1385-1395. [15] 王 时, 王 想, 陈定发, 等. 大尺度雁列断层粘滑运动数值模拟[J]. 地震地磁观测与研究,2018,39(6):23-30. [16] 王学滨, 钱帅帅, 薛承宇, 等. 基于速率–状态依赖摩擦定律的平直走滑断层黏滑过程的连续–非连续方法模拟[J]. 地球物理学进展,2022,37(1):443-449. [17] 赵 永, 赵乾百, 王述红, 等. 不同温度场下断层黏滑失稳过程模拟[J]. 东北大学学报: 自然科学版,2022,43(10):1453-1460. [18] GAO K, GUYER R, ROUGIER E, et al. From stress chains to acoustic emission[J]. Physical Review Letters,2019,123(4):048003.1-048003.5. [19] DOROSTKAR O, CARMELIET J. Grain friction controls characteristics of seismic cycle in faults with granular gouge[J]. Journal of Geophysical Research: Solid Earth,2019,124(7):6475-6489. doi: 10.1029/2019JB017374 [20] CASAS N, MOLLON G, DAOUADJI A. DEM analyses of cemented granular fault gouges at the onset of seismic sliding: peak strength, development of shear zones and kinematics[J]. Pure and Applied Geophysics,2022,179(2):679-707. doi: 10.1007/s00024-021-02934-5 [21] 吕 征. 颗粒物模拟断层粘滑运动机制的实验研究[D]. 北京: 清华大学, 2019. [22] 王弘起, 孙杰龙, 李大卫, 等. 不同含水率高填方黄土抗剪强度试验研究[J]. 岩土工程技术,2022,36(6):507-510. doi: 10.3969/j.issn.1007-2993.2022.06.015 [23] 郝保钦, 张昌锁, 王晨龙, 等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术,2022,50(4):132-141. [24] 后浩斌, 李 盛, 尤著刚, 等. 基于PFC2D的高填黄土减载明洞土体固结蠕变分析[J]. 科学技术与工程,2022,22(32):14360-14369. [25] 石 崇, 张 强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学,2018(S2):36. [26] OZBAY A, CABALAR A F. Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material[J]. Granular Matter,2016,18(3):60. doi: 10.1007/s10035-016-0664-7 [27] 崔德山, 陈 琼, 项 伟, 等. 干模式下颗粒粘滑震动试验研究[J]. 西南交通大学学报,2019,54(1):82-90. [28] 张培震, 徐锡伟, 闻学泽, 等. 2008年汶川8.0级地震发震断裂的滑动速率, 复发周期和构造成因[J]. 地球物理学报,2008,51(4):1066-1073. [29] HIGASHI N, SUMITA I. Experiments on granular rheology: Effects of particle size and fluid viscosity[J]. Journal of Geophysical Research Solid Earth, 2009, 114(B4):B04413:1-B04413:18. [30] ALSHIBLI K A, ROUSSEL L E. Experimental investigation of slip‐stick behaviour in granular materials[J]. International Journal for Numerical & Analytical Methods in Geomechanics,2010,30(14):1391-1407.