Influence of New Pier Construction on Adjacent Existing High Speed Railway Pier Foundation
-
摘要: 为了研究新建墩台施工对邻近高铁桥墩基础的影响,首先基于小应变土体硬化模型(hardening soil model with small-strain stiffness,简称HSS模型),利用PLAXIS 3D有限元软件建立新建墩台施工全过程计算模型,然后分析邻近既有线高铁桥墩基础土体位移特性,并与现场监测数据对比验证有限元计算模型的可靠性,最后计算分析墩台和桩体的位移情况。结果表明:基坑开挖过程模拟采用HSS模型,有助于有限元计算中获得较可靠的位移结果;既有高铁桥墩基础土体方面,水平向基坑方向最大水平位移1.53 mm,最大沉降5.49 mm。既有墩身和承台最大沉降量小于6 mm,墩承台总沉降和相邻墩承台差异沉降均小于规范限值。既有桩基础群桩外围顶部向四周产生位移,而中间桩顶部沉降较小,呈“开花式”位移状态。在新建墩台施工过程中,钻孔灌注桩的施工、钢板桩的插拔和基坑回填对既有高铁桥墩基础水平位移和沉降影响较大。Abstract: To study the influence of new pier construction on adjacent high-speed rail pier foundation, the whole construction process calculation model of the new pier was established based on the hardening soil model with small-strain stiffness (HSS model) and PLAXIS 3D finite element software, and then the soil displacement characteristics of adjacent existing high-speed rail pier foundation were analyzed. The reliability of the finite element model was verified by compared with the field monitoring data. The displacement of the pier and pile was calculated and analyzed. The results show that the HSS model is helpful to obtain more reliable displacement results in finite element calculation. In terms of soil mass, the maximum horizontal displacement and settlement are 1.53 mm and 5.49 mm in the horizontal direction of the foundation pit. The maximum settlement of the existing pier and cap is less than 6 mm, and the total settlement of the pier cap and the differential settlement of the adjacent pier cap is less than the standard limit. The outer top of the pile group of the existing pile foundation has a displacement to the four sides, while the top of the middle pile has a small settlement and bears the "open pattern" displacement state. During the construction of the new pier, the construction of the new bored pile, the insertion of the steel sheet pile, and the backfilling of the foundation pit have a great influence on the horizontal displacement and settlement of the existing high-speed railway pier foundation.
-
表 1 土体基本参数
岩土名称 重度
γ/(kN·m−3)黏聚力
c/kPa内摩擦角
φ/(°)泊松比
μ弹性模量
E/kPa厚度
h/m淤泥质粉质黏土 18.0 10.27 10.49 0.36 2.00×103 15 粉质黏土 18.6 9.83 17.97 0.34 2.79×103 16 粉砂 19.4 5 31 0.28 11.73×103 8 黏土 19.7 21.51 22.72 0.35 3.45×103 10 中砂 18.8 1 29 0.31 10.82×103 37.5 表 2 HSS模型特有参数表
土体名称 淤泥质粉质黏土 粉质黏土 粉砂 黏土 中砂 排水类型 不排水A 不排水A 排水 不排水A 排水 Es1-2/kPa 3.36×103 4.29×103 15.00×103 5.54×103 15.00×103 三轴加载刚度E50/kPa 3.43×103 4.38×103 15.30×103 5.65×103 15.30×103 三轴卸载刚度Eur/kPa 21.36×103 25.28×103 70.22×103 30.50×103 70.23×103 固结仪加载刚度Eoed/kPa 2.72×103 3.48×103 12.15×103 4.49×103 12.15×103 幂指数m 0.90 0.90 0.50 1.00 0.50 初始剪切模量G0/kPa 55×103 65×103 210×103 85×103 200×103 剪切应变水平γ0.7 3.2×10−4 3.2×10−4 3.9×10−4 3.2×10−4 3.9×10−4 表 3 板单元参数表
构件 厚度d/m 截面积A/m2 γsteel/(kN·m−3) γ/(kN·m−3) I1/m4 I2/m4 Esteel/kPa E1/kPa E2/kPa G12/kPa G13/kPa G23/kPa 钢板桩 0.23 30.6×10−3 78.5 170.7 1.19×10−3 0.06×10−3 2.06×108 0.24×109 0.012×109 0.12×109 74.64×106 22.4×106 垫层 0.5 5.9 24.5 0.12 3×107 14.76×106 表 4 梁单元参数表
构件 型号 模型 材料 截面积
A/m2惯性矩
I2/m4惯性矩
I3/m4截面模量
W/m3弹性模量
E/kPa重度
γ /(kN·m−3)屈服应力
f/kPa双拼H型钢 2HW400×400×13×21×22 弹塑性 Q235钢 43.74×10−3 1.31×10−3 14.91×10−3 4.77×10−3 2.06×108 76.93 215×103 钢管撑 ϕ609×16 弹塑性 Q235钢 29.8×10−3 1.31×10−3 1.31×10−3 4.31×10−3 2.06×108 76.93 215×103 表 5 Embedded桩单元参数表
构件 型号 模型 弹性模量E/kPa 重度γ/(kN·m−3) 直径D/m 惯性矩I/m4 钻孔灌注桩 C30HRB400 线弹性 3.0×107 24.5 1.0 49.09×10−3 表 6 施工步骤及工期表
步骤 阶段施工内容 工期/d 步骤 阶段施工内容 工期/d 0 激活土层、既有沪通高铁墩承台和钻孔灌注桩 0 9 激活新建加台 5 1 激活新建钻孔灌注桩 10 10 围堰内回填土3.0 m至标高−7.50 m处 3 2 激活基坑围堰拉森钢板桩 5 11 拆除标高为−6.50 m,−3.50 m,−0.50 m处三道内支撑 1 3 围堰内降水开挖3 m至标高−1.50 m处,在标高−0.50 m处
激活第一层围檩、角撑和内支撑4 12 激活新建桥墩 5 4 围堰内降水开挖3 m至标高−4.50 m处,在标高−3.50 m处
激活第二层围檩、角撑和内支撑4 13 拆除标高为−6.50 m处第三层围檩、角撑,
围堰内回填土3.0 m至标高−4.50 m处3 5 围堰内降水开挖3 m至标高−7.50 m处,在标高−6.50 m处
激活第三层围檩、角撑和内支撑4 14 拆除标高为−3.50 m处第二层围檩、角撑,
围堰内回填土3.0 m至标高−1.50 m处3 6 围堰内降水开挖3 m至标高−10.50 m处 4 15 拆除标高为−0.50 m处第一层围檩、角撑,
围堰内回填土3.0 m至标高1.50 m处3 7 激活0.5 m厚混凝土垫层 1 16 拆除基坑围堰拉森钢板桩 1 8 激活新建承台 5 17 激活新建桥墩顶部荷载 1 -
[1] 于建勇. 新建常州至泰州城际铁路必要性研究[J]. 交通工程,2020,20(2):60-64,72. [2] 张 旭, 王杰杰. 深基坑施工对邻近既有地铁车站附属的影响分析[J]. 岩土工程技术,2023,37(4):492-498. doi: 10.3969/j.issn.1007-2993.2023.04.021 [3] 周志良, 仇 欢, 黄晓东, 等. 钻孔灌注桩施工对邻近运营隧道变形影响研究[J]. 岩土工程技术,2021,35(1):1-6,11. [4] LIYANAPATHIRANA D S, NISHANTHAN R. Influence of deep excavation induced ground movements on adjacent piles[J]. Tunnelling and Underground Space Technology,2016,52(2):168-181. doi: 10.1016/j.tust.2015.11.019 [5] KORFF M, MAIR R J, Van TOL F A F. Pile-soil interaction and settlement effects induced by deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2016,142(8):04016034. doi: 10.1061/(ASCE)GT.1943-5606.0001434 [6] 徐 俊. 深基坑开挖对邻近高速铁路路基影响研究[J]. 铁道建筑技术,2020(10):42-45,88. doi: 10.3969/j.issn.1009-4539.2020.10.010 [7] 侯兰新. 深厚软土地基堆载预压对邻近桥梁桩基影响分析[J]. 铁道建筑技术,2022(6):140-144. doi: 10.3969/j.issn.1009-4539.2022.06.031 [8] 方淑君, 张利勇, 刘神斌, 等. 新建桥运营状态下对邻近高铁桥基础水平变形的影响分析[J]. 铁道科学与工程学报,2021,18(9):2234-2243. [9] 方淑君, 徐新桐, 王 涛, 等. 运营状态下新建桥对邻近高铁桥梁沉降的分析[J]. 铁道科学与工程学报,2022,19(5):1187-1195. [10] 刘 鑫, 张思卿, 龚天昊, 等. 新建墩承台施工对邻近既有高铁线路基的影响研究[J]. 水利与建筑工程学报,2023,21(2):220-228. doi: 10.3969/j.issn.1672-1144.2023.02.033 [11] 岳齐贤, 赵建立, 沈水龙. 泥岩地区沉井施工对土体及高铁桥基影响研究[J]. 地下空间与工程学报,2014,10(4):878-883. [12] 梅 祯, 肖军华, 王炳龙. 基坑开挖对临近基坑地铁高架结构变形的影响[J]. 土木与环境工程学报(中英文),2019,41(4):51-58. [13] 范剑雄, 王海峰, 陕 耀. 新建连镇铁路施工对邻近沪宁城际铁路的影响[J]. 铁道建筑,2022,62(9):136-140. doi: 10.3969/j.issn.1003-1995.2022.09.28 [14] Q/CR 9230—2016 铁路工程沉降变形观测与评估技术规程 [S]. 北京:中国铁道出版社, 2016. -