Shield Muck Generated from Soft Soil Stratum for Preparation of Grouting Material and Its Engineering Applications
-
摘要: 依托苏州市轨道交通8号线隧道工程,采用软弱地层盾构渣土制备同步注浆浆液以减少渣土排放。基于室内试验,测试了渣土浆液的强度、初凝时间、稠度、泌水率等指标,并通过现场试验,将渣土浆液用于盾构隧道壁后注浆。结果表明:渣土浆液能够满足同步注浆浆液性能要求,软土地层盾构渣土可以通过调节配比等方法改善其性能,证明了利用软土地层中土压平衡盾构渣土制备同步注浆浆液的可行性。渣土浆液已用于苏州轨道8号线盾构掘进过程中同步注浆,能较好地控制盾构沉降及管片上浮。盾构渣土制备同步注浆浆液可减少每公里盾构成本约75万元,降低10%渣土排放量,具有良好的经济和环保效益。Abstract: Based on the Suzhou Rail Transit Line 8 subway project, the synchronous grouting slurry was prepared using shield muck generated from soft clay stratum to reduce slag discharge. Based on lab testing, the strength, initial setting time, consistency, bleeding rate, etc. of the shield muck-produced grouting slurry were evaluated. Through engineering practice, the shield muck produced grouting slurry was used for grouting during shield excavation. The results show that the shield muck-produced grouting slurry met the performance requirements for synchronous grouting, and the performance of the muck-produced slurry could be improved by adjusting the mix ratio, demonstrating the feasibility of using soil pressure balance shield muck in soft soil strata to prepare synchronous grouting slurry. The slurry has been used for synchronous grouting during the excavation of the shield in the Suzhou Rail Transit Line 8 project, and the shield settlement and uplift value of lining segments are well controlled. Using shield muck for the preparation of grouting material can reduce the tunnel cost by approximately 750 thousand Yuan per kilometer and decrease the soil discharge by 10%, achieving considerable economic and environmental benefits.
-
Key words:
- shield muck /
- soft soil stratum /
- grouting material /
- mixing ratio /
- numerical model
-
表 1 盾构区间岩土物理力学参数设计表
层序 土层名称 含水量/% 密度/(g·cm−3) 孔隙比 直剪快剪 直剪固快 静止土压力系数 φ /(°) c/kPa φ/ (°) c/kPa 5 粉质黏土 29.5 1.92 0.833 13 24.4 15.8 19.5 0.51 6 黏质粉土夹粉砂 25.7 1.96 0.728 28.6 4.7 30 6.6 0.45 7 粉砂夹粉土 24.3 2.0 0.661 29.5 3.8 32.4 3.4 0.42 8 粉质黏土 31.3 1.92 0.862 11.2 21.9 14.8 23.7 0.55 表 2 水泥的主要技术性能
标准稠度/% 比表面积/
(m2·kg−1)安定性 凝结时间/min 抗压强度/MPa 初凝 终凝 3 d 28 d 27.6 351 合格 182 248 20.2 43.6 表 3 盾构渣土、水泥的主要矿物组成
% 原材料 CaO SiO2 MgO Al2O3 Fe2O3 SO3 K2O 其它 盾构渣土 7.6 63.5 2.5 15.3 6 0.6 3.3 1.2 水泥 63.7 20.1 2.2 5.8 3.4 3.2 1.6 表 4 每立方同步注浆材料配比
试样编号 配合比/kg 泥浆 水泥 砂 粉煤灰 膨润土 添加剂 水 T1 (标准浆液) 100 800 400 60 430 T2 1162 175 20 21 175 T3 1162 175 50~175 21 175 表 5 土层及衬砌、渣土浆液参数
地层及工程材料 重度
/(kN·m−3)弹性模量
/MPa黏聚力
/kPa内摩擦角
/(°)泊松比 2 素填土 19.1 18 15 12 0.31 5 粉质黏土 19.5 30 19.5 16.1 0.3 6 粉土夹粉砂 19.6 53 6.6 30 0.32 7 粉砂夹粉土 20 62 3.4 32.4 0.31 8 粉质黏土 19.2 25.2 23.7 14.8 0.30 管片 25.0 30000 0.25 渣土浆液 19.0 200 0.25 -
[1] 陈 蕊, 杨 凯, 肖 为, 等. 工程渣土的资源化处理处置分析[J]. 环境工程,2020,38(3):22-26. [2] 章邦超, 刘洪亮, 雷锋国, 等. 上软下硬地层大直径土压平衡盾构下穿民房建筑群沉降控制[J]. 现代隧道技术,2022,59(2):172-181. [3] 方 勇, 王 凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J]. 岩土工程学报,2020,42(9):1651-1658. doi: 10.11779/CJGE202009009 [4] 郭卫社, 王百泉, 李沿宗, 等. 盾构渣土无害化处理、资源化利用现状与展望[J]. 隧道建设(中英文),2020,40(8):1101-1112. [5] 张军辉, 李 海, 杨 豪, 等. 等盾构渣土资源化再利用技术研究综述[J]. 中外公路,2022,42(6):1-11. [6] 谢亦朋, 张 聪, 阳军生, 等. 盾构隧道渣土资源化再利用技术研究及展望[J]. 隧道建设(中英文),2022,42(2):188-207. [7] 郝 彤, 李鑫箫, 冷发光, 等. 郑州市地铁粉质黏土层中盾构渣土制备同步注浆材料特性[J]. 长安大学学报(自然科学版),2020,40(3):53-62. [8] 林文书, 王红喜, 彭碧辉, 等. 不同地层盾构泥砂对制 备同步注浆材料性能影响研究[J]. 隧道建设,2013,33(9):715-719. [9] 朱 伟, 钱勇进, 王 璐, 等. 盾构隧道渣土与泥浆的分类 与处理利用技术及主要问题[J]. 隧道建设(中英文),2021,41(S2):1-13. [10] 李 雪, 黄 琦, 王培鑫, 等. 粉细砂地层泥水盾构渣土回收利用及性能优化[J]. 建筑材料学报,2019,22(2):299-307. doi: 10.3969/j.issn.1007-9629.2019.02.021 [11] T/CECS 563—2018 盾构法隧道同步注浆材料应用技术规程[S]. 北京: 中国建筑工业出版社, 2018. [12] 杨 星, 张荣辉, 房宽达, 等. 盾构同步注浆浆液性能影响分析及其配比优化研究[J]. 岩土工程技术,2021,35(5):336-340. doi: 10.3969/j.issn.1007-2993.2021.05.011 [13] 吴克雄, 李顺凯, 杨 钊, 等. 废弃泥浆改性同步注浆材 料试验研究[J]. 科学技术与工程,2017,17(20):277-281. doi: 10.3969/j.issn.1671-1815.2017.20.048 [14] 许 福, 蒋川梓, 张书经, 等. 碱激发矿渣固化土压平衡盾构渣土的试验研究[J]. 地下空间与工程学报,2022,18(3):849-859. doi: 10.3969/j.issn.1673-0836.2022.3.dxkj202203017 [15] TANG S, ZHANG X, LIU Q. Prediction and analysis of replaceable scraper wear of slurry shield tbm in dense sandy ground: a case study of sutong gil yangtze river crossing cable tunnel[J]. Tunnelling and Underground Space Technology,2020,95:103090. doi: 10.1016/j.tust.2019.103090 [16] BARZEGARI G B, UROMEIHY A U, ZHAO J Z. Parametric study of soil abrasivity for predicting wear issue in tbm tunneling projects[J]. Tunnelling And Underground Space Technology,2015,48:43-57. doi: 10.1016/j.tust.2014.10.010 [17] HUANG Z Q, WANG C, DONG J Y, et al. Conditioning experiment on sand and cobble soil for shield tunneling[J]. Tunnelling and Underground Space Technology,2019,87:187-194. doi: 10.1016/j.tust.2019.02.011 [18] WANG S Y, LIU P F, HU Q X, et al. Effect of dispersant on the tangential adhesion strength between clay and metal for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology,2019,95:103144. [19] HEUSER M, SPAGNOLI G, LEROY P, et al. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving[J]. Bulletin of Engineering Geology and the Environment,2012,71(4):721-733. doi: 10.1007/s10064-012-0431-x [20] 张书经, 阳 栋, 谭立新, 等. 盾构渣土的含水率特征及脱水技术研究[J]. 中国水土保持,2019,449(8):37-42. doi: 10.3969/j.issn.1000-0941.2019.08.024 [21] 鱼志鸿, 杨大勇, 章定文, 等. 深圳地铁13号线盾构渣土绿色循环利用技术[J]. 隧道与地下工程灾害防治,2022,4(4):100-106. [22] 岳洪武, 苗 苗. 浅埋暗挖软岩隧道管棚预注浆加固效果分析[J]. 现代隧道技术,2021,58(2):111-117,134. [23] 熊小华, 赵军云, 翁贤杰, 等. 隧道穿越软弱围岩大变形区段初支锁脚大管棚注浆加固效果数值分析[J]. 公路,2023,68(4):392-400. -