Cause Analysis of High Pressure Water Gushing in Hongtu Extra-Long Tunnel
-
摘要: 鸿图特长隧道是广东大丰华高速穿越莲花山脉的关键控制性工程,隧道最大埋深达740 m,隧道开挖过程中遭遇到压力4.8 MPa下大流量涌水,最大水量达14万m3/d。通过分析隧道地质构造影响,阐述开挖过程中高压涌水水量状况及其主要导水构造,同时对涌水过程水量进行跟踪,比较不同洞段位置涌水水质,提出了鸿图特长隧道受莲花山断裂影响下形成的桐子洋向斜蓄水构造、岩体侵入接触蓄水构造和断裂裂隙蓄水构造等3种蓄水构造模式。综合隧道全线涌水量特征与地质构造关系,提出隧道高压涌水机制主要为受莲花山断裂影响形成的地垒式水文地质模型作用,使得隧道在开挖时遭遇到高压大流量涌水,在贯通后受深部储水循环控制,重新构建稳定的地下水系统后,隧道每天涌水达6万m3,与实际吻合。Abstract: The Hongtu extra-long tunnel is the key control project of the Dafenghua Expressway crossing Lianhua Mountain in Guangdong Province. The maximum buried depth of the tunnel is 740 m. In the process of tunnel excavation, a large flow of water was encountered under the pressure of 4.8 MPa, and the maximum water volume is 1.4×105 m3/d. By analyzing the influence of tunnel geological structure, the situation of high-pressure water inflow and its main water-conducting structure were expounded during the excavation process. At the same time, the water volume during the water inflow process was tracked, and the water quality of water inflow at different tunnel sections was compared. Three water storage structure modes, such as Tongziyang syncline water storage structure, rock mass intrusion contact water storage structure, and fracture fissure water storage structure, were proposed under the influence of the Lianhuashan fault in the Hongtu extra-long tunnel. Based on the relationship between the water inflow characteristics of the whole tunnel and the geological structure, it was proposed that the high-pressure water inflow mechanism of the tunnel was mainly affected by the horst-type hydrogeological model formed by the influence of the Lianhuashan fault, which makes the tunnel encounter high-pressure and large-flow water inflow during excavation. After penetration, it was controlled by the deep water storage cycle. After the stability of the groundwater system was rebuilt, nearly 60000 m3 large-flow water inflow per day is consistent with the actual situation.
-
表 1 典型洞段工程地质与水文地质条件
序号 桩号 设计围岩 施工围岩 工程地质条件 涌水特征 超前预报TGP
波速/(m·s−1)1 K91+260—K91+270 Ⅱ S-Ⅳa F91+270断层,NE50°~60°/SE∠83°,
h=0.20 m,断层带主要为角砾岩充填股状水量50~60 m3/h 2000~3000 2 K91+270—K91+280 Ⅱ S-Ⅳd 3000 3 K91+280—K91+290 Ⅱ S-Ⅲ F91+296断层,NE85°/SE∠80°~90°,
宽度h=0.2~0.4 m,断层带主要为角砾岩涌水多为股状水 5000 4 K91+292—K91+302 Ⅱ S-III 5000 5 K91+305—K91+315 Ⅱ S-III 3000 6 ZK94+198—ZK94+188 Ⅱ S-Ⅳd 掌子面节理裂隙发育、
整体破碎、稳定性差边墙股状30 m³/h 5200 7 ZK94+188—ZK94+183 Ⅱ S-III 主要存在3组节理裂隙,张开为主 拱腰股状流水25 m³/h 5200 8 ZK94+183—ZK94+173 Ⅱ I18工字钢护 掌子面围中部发育断层,
带宽为0.3~0.45 m,泥质充填夹角砾岩柱状、股状,总涌水量约350 m³/h 5200 表 2 全线水质分析成果表
采样位置 pH TDS/(mg·L−1) 电导/(μs·cm−1) 总硬度/(mg·L−1) Ca2+ Mg2+ K++Na+ HCO3− SO42− Cl− 水化学类型 /(mg·L−1) K91+169 8.03 194.41 93.31 35.67 1.63 8.9 114.41 8.97 1.21 HCO3-Ca K91+203 8.4 197.0 78.1 29.8 0.83 9.1 102.6 9.068 1.046 HCO3-Ca 飞泉溪流 6.98 10.8 3.76 0.33 3.87 17.3 1.046 1.221 HCO3-Ca·Na 钻孔 8.3 188.0 50.1 18.1 1.16 24.3 80.3 3.6841 1.039 HCO3-Ca·Na ZK94+076 8.1 K91+310 222 K91+295 198 ZK91+40 195 地表水 18~43 -
[1] 刘 拓, 曹小祥, 栗现文. 明堂山隧道断裂破碎带涌水概念模型与止水承压特征[J]. 现代隧道技术,2015,52(5):110-116. [2] 刘 泉, 邓 辉, 王丽丽. 古蔺县中坝岩溶隧道涌突水机制分析[J]. 路基工程,2014,173(2):159-163. [3] ZHAO H, MA F, GUO J. Regularity and formation mechanism of large-scale abrupt karst collapse in southern China in the first half of 2010[J]. Natural Hazards, 2011, 60(3): 1037-1054. [4] HE K Q, YU G M, LU Y R. Palaeo-karst collapse pillars in northern China and their damage to the geological environments[J]. Environmental Geology,2009,58(5):1029-1040 doi: 10.1007/s00254-008-1583-7 [5] 王遇国. 岩溶隧道突水灾害与防治研究[D]. 北京: 中国铁道科学研究院, 2010. [6] 汪 云, 杨海博, 郑梦琪, 等. 岩溶区深埋隧洞水文地质概念模型及突水模式[J]. 人民黄河,2019,41(7):126-130. doi: 10.3969/j.issn.1000-1379.2019.07.027 [7] 郭佳奇, 陈建勋, 陈 帆, 等. 岩溶隧道断续节理掌子面突水判据及灾变过程[J]. 中国公路学报,2018,31(10):118-129. doi: 10.3969/j.issn.1001-7372.2018.10.011 [8] 张金平. 某通车山岭隧道涌水水文地质工程地质评价[J]. 西南公路,2017(3):50-53. [9] 王建秀, 杨立中, 何 静. 深埋隧道涌水量数值计算中的试算流量法[J]. 岩石力学与工程学报,2002,21(12):1776-1780. doi: 10.3321/j.issn:1000-6915.2002.12.006 [10] 黄玉昆, 张 珂. 广东莲花山断裂带的新构造运动特征[J]. 华南地震,1990(2):25-34. [11] 夏玲燕, 林畅松, 李 筱, 等. 基于遥感和航磁多源数据研究莲花山深大断裂在广东及相邻海域的延伸[J]. 国土资源遥感,2019,31(1):247-254. [12] 张文高, 王晓虎, 陈正乐, 等. 广东莲花山断裂带韧性剪切带变形特征及其与成矿的关系[J]. 中国地质,2020,47(4):932-943. [13] 汪礼明, 王 军, 王 核, 等. 粤东莲花山断裂带动力变质作用与动力变质热液成矿[J]. 大地构造与成矿学,2018,42(5):908-917. [14] PARK K H, OWATIRIWONG A, LEE J G. Analytical solution for steady-state groundwater inflow into a arained circular tunnel in a semi-infinite aquifer: a revisit[J]. Tunneling and Underground Space Technology,2008,23(2):206-209. doi: 10.1016/j.tust.2007.02.004 [15] TANI M E. Circular tunnel in a semi-infinite aquifer[J]. Tunneling and Underground Space Technology,2003,18(1):49-55. doi: 10.1016/S0886-7798(02)00102-5 [16] MOLINERO J, SAMPER J, JUANES R. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks[J]. Engineering Geology,2002,64(4):369-386. doi: 10.1016/S0013-7952(01)00099-0 -