Failure Mode and Path Analysis of High and Steep Rock Slope in Mountainous Areas, Southwestern China: A Case Study in Bowa Hydropower Station
-
摘要: 西南地区由于其丰富的水能资源储备,已成为我国水电站建设最为集中的区域。为了解决高山峡谷区修建水电站时开挖引起的高陡岩质边坡问题,以博瓦水电站左岸边坡3号危岩体为研究对象,结合无人机三维建模手段,采用赤平投影法和极限平衡法分别从定性和定量角度论述了该危岩体的变形破坏模式及路径,并借助数值模拟手段完成结果分析和验证。结果表明:3号危岩体的破坏主要受两侧优势结构面控制,属多级、多次的楔形体破坏模式,其在天然工况下较为稳定,但在暴雨、地震等极端工况下可能发生破坏;数值分析结果则表现出“先滑移后倾倒”的破坏形式,为理论分析提供支撑。研究成果对类似的高陡水电岩质边坡破坏及防治问题提供了一定的科学参考和工程经验。Abstract: Southwestern China has become the most concentrated area for the construction of hydropower stations in China due to its rich hydropower resources. When building a hydropower station in the Alpine Valley area, it often causes the problem of destruction on steep rock slopes because of the excavation. To solve this problem, taking the No. 3 dangerous rock mass on the left bank slope of the Bowa Hydropower Station as the research object, combined with the 3D realistic modeling method of unmanned aerial vehicles, the deformation and failure modes and paths of the dangerous rock mass were qualitatively and quantitatively discussed using the stereographic projection method and limit equilibrium method. The results were analyzed and verified using numerical simulation methods. The main findings were as follows: The failure of No. 3 dangerous rock mass was mainly controlled by the preferred planes of both sides, belonging to a multi-stage and multiple wedge-shaped failure mode. It is relatively stable under natural engineering conditions, but it may occur under extreme conditions such as heavy rain and earthquakes. The numerical simulation results show a failure form of "sliding first and then dumping", which verifies the correctness of the theoretical analysis. Research results provide certain engineering experience and scientific reference value for similar steep rock slope problems of hydropower stations.
-
表 1 3号危岩体节理平均几何特征统计表
节理编号 数量/组 长度/m 间距/m 产状 连通率 J3-a 29 18 2 255°∠63° 0.58 J3-b 18 18.9 1.6 326°∠84° 0.7 J3-c 16 36.9 0.35 110°∠57° 0.77 J3-d 16 22.3 3.01 48°∠81° 0.61 表 2 稳定性计算参数选取表
计算
单元重度/ (kN·m−3) 内摩擦角φ/(°) 黏聚力c/ kPa 天然 饱水 天然 饱水 天然 饱水 大理岩 27 27.5 34 32 420 400 结构面 25 24 70 60 -
[1] 宋胜武, 冯学敏, 向柏宇, 等. 西南水电高陡岩石边坡工程关键技术研究[J]. 岩石力学与工程学报,2011,30(1):1-22. [2] 王周萼, 蔡耀军. 高山峡谷区不良地质体堵江风险分析——以旭龙水电站为例[J]. 人民长江,2022,53(4):125-129,148. [3] 马荣和. HSSPC方法及其在水工高陡岩质边坡稳定性评价中的应用研究[D]. 昆明: 昆明理工大学, 2020. [4] HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides,2014,11(2):167-194. doi: 10.1007/s10346-013-0436-y [5] 张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 北京: 地质出版社, 1994. [6] 陈洪凯, 唐红梅. 长江三峡水库区危岩分类及宏观判据研究[J]. 中国地质灾害与防治学报,2005(4):57-61,82. doi: 10.3969/j.issn.1003-8035.2005.04.013 [7] 田 耘. 高烈度区水平复杂层状岩质边坡的动力破坏机制[D]. 重庆: 重庆交通大学, 2020. [8] 王 洋, 魏玉峰, 贺琮栖, 等. 反倾岩质边坡多级破坏边界折断深度计算模型[J]. 岩石力学与工程学报,2023,42(3):630-639. [9] 马 克. 开挖扰动条件下岩质边坡灾变孕育机制、监测与控制方法研究——以大岗山水电站右岸边坡为例[D]. 大连: 大连理工大学, 2014. [10] 袁 奇, 刘 品, 谭玉强. 贵州惠罗高速公路缓倾顺层基岩滑坡治理方案分析[J]. 中国地质灾害与防治学报,2018,29(4):103-107. [11] 李红旭, 王衍汇, 周 海. 高速铁路高陡碎裂岩质边坡稳定性评价[J]. 铁道勘察,2022,48(5):46-51. [12] 王永学, 朱 凌, 裴向军, 等. 典型震裂山体发育特征及形成机制分析——以四川省茂县叠溪镇松坪沟为例[J]. 人民长江,2022,53(4):118-124. [13] 张 帆, 王明疆, 刘永智. 基于刚体极限平衡法和离散元法的某水电工程岩质边坡综合处理措施[J]. 西北水电,2020(S1):15-21. [14] 王 凯. 西成高铁东崂峪大桥岩质边坡稳定性研究[J]. 铁道勘察,2019,45(2):28-32. [15] 高玉峰, 万愉快, 张 飞. 三维非对称边坡稳定性分析极限平衡法[J]. 中国科学: 技术科学,2022,52(12):1819-1830. [16] 张 莹, 王旭阳, 林智勇. 某露天矿山破碎岩体高陡岩质边坡稳定性的数值模拟研究[J]. 有色金属(矿山部分),2023,75(2):100-105. [17] 王 川, 冷先伦, 张占荣, 等. 基于裂隙扩展的多级岩质边坡开挖卸荷破坏路径分析[J]. 岩土力学,2023,44(4):1190-1203. [18] 刘汉东, 牛林峰, 王忠福, 等. 震动强度对反倾层状岩质边坡动力响应规律的影响[J]. 防灾减灾工程学报,2018,38(4):677-683. [19] SONG D Q, LIU X L, HUANG J, et al. Seismic cumulative failure effects on a reservoir bank slope with a complex geological structure considering plastic deformation characteristics using shaking table tests[J]. Engineering Geology,2021,286(1):106085. [20] LIU H L, LI L C, LI S H, et al. The time-dependent failure mechanism of rocks and associated application in slope engineering: an explanation based on numerical investigation[J]. Mathematical Problems in Engineering,2020(7):1-19. [21] 杜 威, 陈兴周, 陈莉丽, 等. 岩质边坡开挖卸荷岩体参数特征分析[J]. 防灾减灾工程学报,2023,43(3):596-603. [22] LI K, WANG Y F, LIN Q W, et al. Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics[J]. Landslides,2021,18:1779-1799. doi: 10.1007/s10346-020-01607-z [23] 王有建. 高陡岩质边坡变形破坏特征及控制研究[D]. 淮南: 安徽理工大学, 2021. [24] 吴微微, 吴 朋, 魏娅玲, 等. 川滇活动块体中—北部主要活动断裂带现今应力状态的分区特征[J]. 地球物理学报,2017,60(5):1735-1745. doi: 10.6038/cjg20170511 [25] 徐锡伟, 程 佳, 许 冲, 等. 青藏高原块体运动模型与地震活动主体地区讨论: 鲁甸和景谷地震的启示[J]. 地震地质,2014,36(4):1116-1134. doi: 10.3969/j.issn.0253-4967.2014.04.015 [26] 冯 威. 高寒高海拔复杂艰险山区无人机勘察技术应用[J]. 铁道工程学报,2019,36(8):9-13. doi: 10.3969/j.issn.1006-2106.2019.08.003 [27] 胡才源, 章广成, 李小玲. 无人机遥感在高位崩塌地质灾害调查中的应用[J]. 人民长江,2019,50(1):136-140. [28] GB 18306—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2015. -