Citation: | Xian Tianlang, Li Xiaohu, Zhang Yun, Huang Jinlong, Chen Gan. Stratigraphic classification prediction method for static cone penetrate test based on XGBoost and Bayesian optimization[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 656-666. doi: 10.20265/j.cnki.issn.1007-2993.2024-0165 |
[1] |
吴波鸿, 王贵和, 刘宝林, 等. 静力触探在海底土层工程性质评价中的应用研究[J]. 科学技术与工程, 2016, 16(23): 123-128. (WU B H, WANG G H, LIU B L, et al. The application of cone penetration test in subsea soil geotechnical properties evaluation[J]. Science Technology and Engineering, 2016, 16(23): 123-128. (in Chinese) doi: 10.3969/j.issn.1671-1815.2016.23.023
WU B H, WANG G H, LIU B L, et al. The application of cone penetration test in subsea soil geotechnical properties evaluation[J]. Science Technology and Engineering, 2016, 16(23): 123-128. (in Chinese) doi: 10.3969/j.issn.1671-1815.2016.23.023
|
[2] |
王 波, 李建强, 冯 涛, 等. 超深孔压静力触探在工程勘察的应用[J]. 铁道工程学报, 2016, 33(8): 44-49. (WANG B, LI J Q, FENG T, et al. Application of super-deep piezocone penetration tests in engineering investigation[J]. Journal of Railway Engineering Society, 2016, 33(8): 44-49. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.08.010
WANG B, LI J Q, FENG T, et al. Application of super-deep piezocone penetration tests in engineering investigation[J]. Journal of Railway Engineering Society, 2016, 33(8): 44-49. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.08.010
|
[3] |
林 军, 蔡国军, 刘松玉, 等. 基于孔压静力触探力学分层的土体边界识别方法研究[J]. 岩土力学, 2017, 38(5): 1413-1423. (LIN J, CAI G J, LIU S Y, et al. Identification of soil layer boundaries using mechanical layered method base on piezocone penetration test data[J]. Rock and Soil Mechanics, 2017, 38(5): 1413-1423. (in Chinese)
LIN J, CAI G J, LIU S Y, et al. Identification of soil layer boundaries using mechanical layered method base on piezocone penetration test data[J]. Rock and Soil Mechanics, 2017, 38(5): 1413-1423. (in Chinese)
|
[4] |
曹子君, 郑 硕, 李典庆, 等. 基于静力触探的土层自动划分方法与不确定性表征[J]. 岩土工程学报, 2018, 40(2): 336-345. (CAO Z J, ZHENG S, LI D Q, et al. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336-345. (in Chinese) doi: 10.11779/CJGE201802015
CAO Z J, ZHENG S, LI D Q, et al. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336-345. (in Chinese) doi: 10.11779/CJGE201802015
|
[5] |
苗永红, 柏国龙. 基于概率神经网络的孔压静力触探的土层界面识别[J]. 济南大学学报(自然科学版), 2017, 31(4): 279-284. (MIAO Y H, BAI G L. Soil layer interface identification using piezocone penetration test based on probabilistic neural network[J]. Journal of University of Jinan (Science and Technology), 2017, 31(4): 279-284. (in Chinese)
MIAO Y H, BAI G L. Soil layer interface identification using piezocone penetration test based on probabilistic neural network[J]. Journal of University of Jinan (Science and Technology), 2017, 31(4): 279-284. (in Chinese)
|
[6] |
吕树胜, 陈培帅, 邱 敏, 等. 基于层次聚类算法的静力触探试验土体分类方法及试验研究[J]. 科学技术与工程, 2021, 21(7): 2609-2615. (LÜ S S, CHEN P S, QIU M, et al. Soil classification method and experimental research from CPT based on hierarchical clustering algorithm[J]. Science Technology and Engineering, 2021, 21(7): 2609-2615. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.07.007
LÜ S S, CHEN P S, QIU M, et al. Soil classification method and experimental research from CPT based on hierarchical clustering algorithm[J]. Science Technology and Engineering, 2021, 21(7): 2609-2615. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.07.007
|
[7] |
刘松玉, 蔡国军, 邹海峰. 基于CPTU的中国实用土分类方法研究[J]. 岩土工程学报, 2013, 35(10): 1765-1776. (LIU S Y, CAI G J, ZOU H F. Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1765-1776. (in Chinese)
LIU S Y, CAI G J, ZOU H F. Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1765-1776. (in Chinese)
|
[8] |
蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416-424. (CAI G J, LIU S Y, TONG L Y, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.018
CAI G J, LIU S Y, TONG L Y, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.018
|
[9] |
ZHU W Y, SONG T R, WANG M C, et al. Stratigraphic subdivision-based logging curves generation using neural random forests[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111086. doi: 10.1016/j.petrol.2022.111086
|
[10] |
ZHANG W G, PHOON K K. Editorial for advances and applications of deep learning and soft computing in geotechnical underground engineering[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 671-673. doi: 10.1016/j.jrmge.2022.01.001
|
[11] |
邱 敏, 宋友建, 丛 璐, 等. 基于层次聚类算法的孔压静力触探土体分类方法及试验研究[J]. 水文地质工程地质, 2019, 46(3): 117-123. (QIU M, SONG Y J, CONG L, et al. Soil classification method and experimental research on CPTU based on the hierarchical clustering algorithm[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 117-123. (in Chinese)
QIU M, SONG Y J, CONG L, et al. Soil classification method and experimental research on CPTU based on the hierarchical clustering algorithm[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 117-123. (in Chinese)
|
[12] |
徐黎明. 基于支持向量机的双桥静力触探地层自动划分方法[J]. 铁道勘察, 2023, 49(4): 90-95. (XU L M. Automatic method of soil layers division using double bridge static cone penetration test data based on support vector machine[J]. Railway Investigation and Surveying, 2023, 49(4): 90-95. (in Chinese)
XU L M. Automatic method of soil layers division using double bridge static cone penetration test data based on support vector machine[J]. Railway Investigation and Surveying, 2023, 49(4): 90-95. (in Chinese)
|
[13] |
陈振新, 何旭涛, 袁舟龙, 等. 基于自编码神经网络的孔压静力触探海底土层划分方法改进[J]. 工程勘察, 2019, 47(6): 23-28. (CHEN Z X, HE X T, YUAN Z L, et al. Improvement of division method for seabed strata base on piezocone penetration test data with autoencoders[J]. Geotechnical Investigation & Surveying, 2019, 47(6): 23-28. (in Chinese)
CHEN Z X, HE X T, YUAN Z L, et al. Improvement of division method for seabed strata base on piezocone penetration test data with autoencoders[J]. Geotechnical Investigation & Surveying, 2019, 47(6): 23-28. (in Chinese)
|
[14] |
WOOD D A. Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106587. doi: 10.1016/j.petrol.2019.106587
|
[15] |
LI S L, ZHANG X J. Research on orthopedic auxiliary classification and prediction model based on XGBoost algorithm[J]. Neural Computing and Applications, 2020, 32(7): 1971-1979. doi: 10.1007/s00521-019-04378-4
|
[16] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 785-794.
|
[17] |
WANG T T, BIAN Y J, ZHANG Y X, et al. Classification of earthquakes, explosions and mining-induced earthquakes based on XGBoost algorithm[J]. Computers & Geosciences, 2023, 170: 105242.
|
[18] |
GENG X J, WU S C, ZHANG Y J, et al. Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity[J]. Natural Hazards, 2023, 119(1): 751-771. doi: 10.1007/s11069-023-06137-0
|
[19] |
ZHANG W G, WU C Z, ZHONG H Y, et al. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization[J]. Geoscience Frontiers, 2021, 12(1): 469-477. doi: 10.1016/j.gsf.2020.03.007
|
[20] |
PANTELEEV A V, LOBANOV A V. Mini-batch adaptive random search method for the parametric identification of dynamic systems[J]. Automation and Remote Control, 2020, 81(11): 2026-2045. doi: 10.1134/S0005117920110065
|
[21] |
BHAT P C, PROSPER H B, SEKMEN S, et al. Optimizing event selection with the random grid search[J]. Computer Physics Communications, 2018, 228: 245-257. doi: 10.1016/j.cpc.2018.02.018
|
[22] |
GHAHRAMANI Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452-459. doi: 10.1038/nature14541
|
[23] |
XIA Y F, LIU C Z, LI Y Y, et al. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Expert Systems with Applications, 2017, 78: 225-241. doi: 10.1016/j.eswa.2017.02.017
|
[24] |
QIU Y G, ZHOU J, KHANDELWAL M, et al. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration[J]. Engineering with Computers, 2022, 38(S5): 4145-4162. doi: 10.1007/s00366-021-01393-9
|