Volume 39 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
Bu Chongpeng, Fan Yuchao, Wang Yonghua, Yang Lina, Luo Lijuan, Zhang Xiaohui, Wang Mingjiao. Shear-slip test study of cantilever retaining wall structure on waterproof layer[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 737-743. doi: 10.20265/j.cnki.issn.1007-2993.2024-0232
Citation: Bu Chongpeng, Fan Yuchao, Wang Yonghua, Yang Lina, Luo Lijuan, Zhang Xiaohui, Wang Mingjiao. Shear-slip test study of cantilever retaining wall structure on waterproof layer[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 737-743. doi: 10.20265/j.cnki.issn.1007-2993.2024-0232

Shear-slip test study of cantilever retaining wall structure on waterproof layer

doi: 10.20265/j.cnki.issn.1007-2993.2024-0232
  • Received Date: 2024-05-28
  • Accepted Date: 2024-08-29
  • Rev Recd Date: 2024-07-04
  • Publish Date: 2025-10-10
  • The anti-sliding bearing capacity, shear-slip failure characteristics, and mechanism of cantilever retaining walls placed on the protective layer of three waterproofing practices were studied through indoor large-scale shear tests and creep-stress relaxation coupled tests. Experimental results revealed that shear deformation, obvious deformation, and failure occur at the contact between the base plate of the cantilever retaining wall structure and the waterproof layer, and two forms mainly occur: slip failure and peeling failure. The shear deformation failure process of the cantilever retaining wall structure includes three stages: deformation, slippage, and peeling. The influence of different waterproof layers on the horizontal displacement and anti-slip bearing capacity of the upper retaining wall is obvious. The basement friction coefficient of the retaining wall on the waterproof layer is between 0.1 and 0.2, and compared with the conventional rock foundation retaining wall, the basement friction coefficient of the retaining wall is significantly smaller, and the horizontal displacement is large.

     

  • loading
  • [1]
    中华人民共和国住房和城乡建设部. 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building slope engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building slope engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [2]
    中华人民共和国交通运输部. 公路桥涵地基与基础设计规范: JTG 3363—2019[S]. 北京: 人民交通出版社, 2020. (Ministry of Transport of the People’s Republic of China. Specifications for design of foundation of highway bridges and culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2020. (in Chinese)

    Ministry of Transport of the People’s Republic of China. Specifications for design of foundation of highway bridges and culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [3]
    中华人民共和国水利部. 水工挡土墙设计规范: SL 379—2007[S]. 北京: 中国水利水电出版社, 2007. (Ministry of Water Resources of the People’s Republic of China. Design specification for hydraulic retaining wall: SL 379—2007[S]. Beijing: China Water & Power Press, 2007. (in Chinese)

    Ministry of Water Resources of the People’s Republic of China. Design specification for hydraulic retaining wall: SL 379—2007[S]. Beijing: China Water & Power Press, 2007. (in Chinese)
    [4]
    中华人民共和国水利部. 水闸设计规范: SL 265—2016[S]. 北京: 中国水利水电出版社, 2017. (Ministry of Water Resources of the People’s Republic of China. Design specifications for sluices: SL 265—2016[S]. Beijing: China Water & Power Press, 2017. (in Chinese)

    Ministry of Water Resources of the People’s Republic of China. Design specifications for sluices: SL 265—2016[S]. Beijing: China Water & Power Press, 2017. (in Chinese)
    [5]
    吕 鹏, 刘建坤, 崔颖辉. 冻土–混凝土接触面动剪强度研究[J]. 岩土力学, 2013, 34(S2): 180-183. (LÜ P, LIU J K, CUI Y H. A study of dynamic shear strength of frozen soil-concrete contact interface[J]. Rock and Soil Mechanics, 2013, 34(S2): 180-183. (in Chinese)

    LÜ P, LIU J K, CUI Y H. A study of dynamic shear strength of frozen soil-concrete contact interface[J]. Rock and Soil Mechanics, 2013, 34(S2): 180-183. (in Chinese)
    [6]
    王青志, 朱鑫鑫, 刘建坤, 等. 寒区高速铁路路基粗颗粒填料大型直剪试验研究[J]. 铁道学报, 2016, 38(8): 102-109. (WANG Q Z, ZHU X X, LIU J K, et al. Experimental study on direct shear tests of coarse-grained fillings of high-speed railway subgrade in cold region[J]. Journal of the China Railway Society, 2016, 38(8): 102-109. (in Chinese)

    WANG Q Z, ZHU X X, LIU J K, et al. Experimental study on direct shear tests of coarse-grained fillings of high-speed railway subgrade in cold region[J]. Journal of the China Railway Society, 2016, 38(8): 102-109. (in Chinese)
    [7]
    陈 云. 油毡底模对码头(防波堤)滑移稳定的影响[J]. 水运工程, 1987(5): 37-40. (CHEN Y. Effect of linoleum bed mold on slip stability of wharf (breakwater)[J]. Water Transport Engineering, 1987(5): 37-40. (in Chinese)

    CHEN Y. Effect of linoleum bed mold on slip stability of wharf (breakwater)[J]. Water Transport Engineering, 1987(5): 37-40.
    [8]
    张友葩, 高永涛, 方祖烈, 等. 交通载荷下挡土墙的失稳分析[J]. 北京科技大学学报, 2003, 25(1): 18-22. (ZHANG Y P, GAO Y T, FANG Z L, et al. Instability analysis of retaining walls under random vehicle loading condition[J]. Journal of University of Science and Technology Beijing, 2003, 25(1): 18-22. (in Chinese)

    ZHANG Y P, GAO Y T, FANG Z L, et al. Instability analysis of retaining walls under random vehicle loading condition[J]. Journal of University of Science and Technology Beijing, 2003, 25(1): 18-22. (in Chinese)
    [9]
    毕微微, 李云鹏, 韩 冰. 弯曲河道洪水冲刷重力式护管挡墙稳定性分析[J]. 岩石力学与工程学报, 2014, 33(S1): 2670-2676. (BI W W, LI Y P, HAN B. Stability analysis of gravity pipeline protection retaining wall subjected to loads of flood in river bend[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2670-2676. (in Chinese)

    BI W W, LI Y P, HAN B. Stability analysis of gravity pipeline protection retaining wall subjected to loads of flood in river bend[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2670-2676. (in Chinese)
    [10]
    李广信. 基坑中土的应力路径与强度指标以及关于水的一些问题[J]. 岩石力学与工程学报, 2012, 31(11): 2269-2275. (LI G X. Stress path and strength parameters of soil in foundation pits and some problems about water[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2269-2275. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.015

    LI G X. Stress path and strength parameters of soil in foundation pits and some problems about water[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2269-2275. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.015
    [11]
    于鹏强, 刘 洋, 彭银刚, 等. 考虑填土各向异性的主动土压力计算[J]. 土木工程学报, 2019, 52(S1): 218-225. (YU P Q, LIU Y, PENG Y G, et al. Calculation of active earth pressure for anisotropic sand[J]. China Civil Engineering Journal, 2019, 52(S1): 218-225. (in Chinese)

    YU P Q, LIU Y, PENG Y G, et al. Calculation of active earth pressure for anisotropic sand[J]. China Civil Engineering Journal, 2019, 52(S1): 218-225. (in Chinese)
    [12]
    马少俊, 胡安峰, 王奎华. 地震作用下挡土墙的滑动稳定性分析[J]. 工程力学, 2012, 29(7): 209-213. (MA S J, HU A F, WANG K H. Stability against sliding analysis of a retaining wall under seismic loading condition[J]. Engineering Mechanics, 2012, 29(7): 209-213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.10.0736

    MA S J, HU A F, WANG K H. Stability against sliding analysis of a retaining wall under seismic loading condition[J]. Engineering Mechanics, 2012, 29(7): 209-213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.10.0736
    [13]
    贾 亮, 朱彦鹏, 来春景. 地震作用下加筋挡土墙稳定性分析[J]. 西南交通大学学报, 2016, 51(4): 697-703. (JIA L, ZHU Y P, LAI C J. Stability analysis of reinforced earth retaining wall under earthquake[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 697-703. (in Chinese)

    JIA L, ZHU Y P, LAI C J. Stability analysis of reinforced earth retaining wall under earthquake[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 697-703. (in Chinese)
    [14]
    任庆昌. 桩基悬臂式挡墙在路基帮宽工程中的应用[J]. 铁道工程学报, 2015, 32(2): 43-47,63. (REN Q C. Application of cantilever retaining wall with pile foundation in subgrade widening engineering[J]. Journal of Railway Engineering Society, 2015, 32(2): 43-47,63. (in Chinese) doi: 10.3969/j.issn.1006-2106.2015.02.009

    REN Q C. Application of cantilever retaining wall with pile foundation in subgrade widening engineering[J]. Journal of Railway Engineering Society, 2015, 32(2): 43-47,63. (in Chinese) doi: 10.3969/j.issn.1006-2106.2015.02.009
    [15]
    朱彦鹏, 杨校辉, 马孝瑞, 等. 柔性加固失稳重力式挡土墙的动静力稳定性分析[J]. 工程力学, 2015, 32(11): 1-8. (ZHU Y P, YANG X H, MA X R, et al. Statics and dynamic stability of unstability gravity retaining wall reinforced with frame-anchors[J]. Engineering Mechanics, 2015, 32(11): 1-8. (in Chinese)

    ZHU Y P, YANG X H, MA X R, et al. Statics and dynamic stability of unstability gravity retaining wall reinforced with frame-anchors[J]. Engineering Mechanics, 2015, 32(11): 1-8. (in Chinese)
    [16]
    罗林阁, 崔立川, 石海洋, 等. 地连墙–重力式复合锚碇基础承载性能试验研究[J]. 岩土力学, 2019, 40(3): 1049-1058. (LUO L G, CUI L C, SHI H Y, et al. Experimental study of bearing capacity of underground diaphragm wall-gravity anchorage composite foundation[J]. Rock and Soil Mechanics, 2019, 40(3): 1049-1058. (in Chinese)

    LUO L G, CUI L C, SHI H Y, et al. Experimental study of bearing capacity of underground diaphragm wall-gravity anchorage composite foundation[J]. Rock and Soil Mechanics, 2019, 40(3): 1049-1058. (in Chinese)
    [17]
    吴顺川, 高永涛, 王金安. 失稳加筋土挡土墙加固方案及技术评价[J]. 岩石力学与工程学报, 2007, 26(S1): 3086-3091. (WU S C, GAO Y T, WANG J A. Reinforcement scheme of failure reinforced earth retaining wall and its technical assessment[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3086-3091. (in Chinese)

    WU S C, GAO Y T, WANG J A. Reinforcement scheme of failure reinforced earth retaining wall and its technical assessment[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3086-3091. (in Chinese)
    [18]
    李 驰, 杨 柳, 乌力吉那顺, 等. 黄土泥岩接触地带界面滑坡的工程防护模型试验研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3923-3929. (LI C, YANG L, WULIJI N S, et al. Model experiment of engineering protection on loess-mudstone interfacial landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3923-3929. (in Chinese)

    LI C, YANG L, WULIJI N S, et al. Model experiment of engineering protection on loess-mudstone interfacial landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3923-3929. (in Chinese)
    [19]
    张久鹏, 黄晓明, 马 涛. 沥青混合料损伤蠕变特性及模型研究[J]. 岩土工程学报, 2008, 30(12): 1867-1871. (ZHANG J P, HUANG X M, MA T. Damage-creep characteristics and model of asphalt mixture[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1867-1871. (in Chinese)

    ZHANG J P, HUANG X M, MA T. Damage-creep characteristics and model of asphalt mixture[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1867-1871. (in Chinese)
    [20]
    张 锋, 李梦琪, 王天宇, 等. 水泥混凝土桥面复合防水粘结层的性能[J]. 哈尔滨工业大学学报, 2020, 52(3): 26-32. (ZHANG F, LI M Q, WANG T Y, et al. Performance of composite waterproof cohesive layer on cement concrete bridge[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 26-32. (in Chinese)

    ZHANG F, LI M Q, WANG T Y, et al. Performance of composite waterproof cohesive layer on cement concrete bridge[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 26-32. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (13) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return