Citation: | Xu Hao, Liao Mingxin, Bian Shihai, Jiang Jianliang, Li Aodian, Xu Binfeng, Luo Weijin. Prediction of river embankment deformation during pipe jacking based on machine learning[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 639-647. doi: 10.20265/j.cnki.issn.1007-2993.2024-0287 |
[1] |
赵效祖. 基于多元线性回归分析模型的基坑形变监测研究[D]. 兰州: 兰州交通大学, 2020. (ZHAO X J. Research on foundation pit deformation monitoring based on multiple linear regression analysis model[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
ZHAO X J. Research on foundation pit deformation monitoring based on multiple linear regression analysis model[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
|
[2] |
杨 恒, 岳建平, 周钦坤. 利用SVM与ARIMA组合模型进行大坝变形预测[J]. 测绘通报, 2021(4): 74-78. (YANG H, YUE J P, ZHOU Q K. Dam deformation prediction using SVM and ARIMA combined model[J]. Bulletin of Surveying and Mapping, 2021(4): 74-78. (in Chinese)
YANG H, YUE J P, ZHOU Q K. Dam deformation prediction using SVM and ARIMA combined model[J]. Bulletin of Surveying and Mapping, 2021(4): 74-78. (in Chinese)
|
[3] |
牛帅星, 李庶林, 刘胤池, 等. 基于小波变换的GASVM-ARMA模型在深基坑变形预测中的应用[J]. 土木与环境工程学报(中英文), 2023, 45(3): 16-23. (NIU S X, LI S L, LIU Y C, et al. Application of GASVM-ARMA model based on wavelet transform in deformation prediction of deep foundation pit[J]. Journal of Civil and Environmental Engineering, 2023, 45(3): 16-23. (in Chinese)
NIU S X, LI S L, LIU Y C, et al. Application of GASVM-ARMA model based on wavelet transform in deformation prediction of deep foundation pit[J]. Journal of Civil and Environmental Engineering, 2023, 45(3): 16-23. (in Chinese)
|
[4] |
于 玲, 王晓光, 包龙生. 基于灰色理论的基坑桩顶水平位移预测[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(3): 459-465. (YU L, WANG X G, BAO L S. Study on prediction of foundation pit horizontal displacement of pile top based on grey theory[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(3): 459-465. (in Chinese)
YU L, WANG X G, BAO L S. Study on prediction of foundation pit horizontal displacement of pile top based on grey theory[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(3): 459-465. (in Chinese)
|
[5] |
袁志明, 李沛鸿, 刘小生. 顾及邻近点的改进PSO-SVM模型在基坑沉降预测的应用研究[J]. 大地测量与地球动力学, 2021, 41(3): 313-318. (YUAN Z M, LI P H, LIU X S. Study on the application of improved PSO-SVM model considering neighbor-point in the settlement prediction of foundation pit[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 313-318. (in Chinese)
YUAN Z M, LI P H, LIU X S. Study on the application of improved PSO-SVM model considering neighbor-point in the settlement prediction of foundation pit[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 313-318. (in Chinese)
|
[6] |
李 举. 基于改进灰狼算法优化LSSVM模型在变形监测中的应用[D]. 西安: 长安大学, 2020. (LI J. Optimization of LSSVM model based on improved gray wolf algorithm and its application in deformation monitoring[D]. Xi’an: Chang’an University, 2020. (in Chinese)
LI J. Optimization of LSSVM model based on improved gray wolf algorithm and its application in deformation monitoring[D]. Xi’an: Chang’an University, 2020. (in Chinese)
|
[7] |
黄思岚, 杨 杰, 屈旭东. 基于NRS-RF的混凝土坝变形监测模型研究[J]. 人民长江, 2021, 52(2): 111-116. (HUANG S L, YANG J, QU X D. Research on deformation monitoring model of concrete dam based on NRS-RF[J]. Yangtze River, 2021, 52(2): 111-116. (in Chinese)
HUANG S L, YANG J, QU X D. Research on deformation monitoring model of concrete dam based on NRS-RF[J]. Yangtze River, 2021, 52(2): 111-116. (in Chinese)
|
[8] |
陈诗怡, 杨 杰, 程 琳, 等. 基于Copula-RF的混凝土坝变形监测模型[J]. 三峡大学学报(自然科学版), 2020, 42(2): 18-23. (CHEN S Y, YANG J, CHEN L, et al. Concrete dam deformation monitoring model based on Copula-RF[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(2): 18-23. (in Chinese)
CHEN S Y, YANG J, CHEN L, et al. Concrete dam deformation monitoring model based on Copula-RF[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(2): 18-23. (in Chinese)
|
[9] |
安惠伦. 基于PCA-SSA-XGBoost模型的拱坝应力预测研究[D]. 天津: 天津大学, 2021. (AN H L. Research on arch dam stress prediction based on PCA-SSA-XGBoost model[D]. Tianjin: Tianjin University, 2021. (in Chinese)
AN H L. Research on arch dam stress prediction based on PCA-SSA-XGBoost model[D]. Tianjin: Tianjin University, 2021. (in Chinese)
|
[10] |
杨晨蕾, 包腾飞. 基于FCM-XGBoost的大坝变形预测模型[J]. 长江科学院院报, 2021, 38(8): 66-71. (YANG C L, BAO T F. Dam deformation prediction model based on FCM-XGBoost[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 66-71. (in Chinese) doi: 10.11988/ckyyb.20200508
YANG C L, BAO T F. Dam deformation prediction model based on FCM-XGBoost[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 66-71. (in Chinese) doi: 10.11988/ckyyb.20200508
|
[11] |
郑海青, 赵越磊, 宗广昌, 等. 融合自注意力机制的Conv-LSTM边坡位移预测方法[J]. 金属矿山, 2022(11): 193-197. (ZHENG H Q, ZHAO Y L, ZONG G C et al. Prediction of slope displacement based on Conv-LSTM combined with self-attention mechanism[J]. Metal Mine, 2022(11): 193-197. (in Chinese)
ZHENG H Q, ZHAO Y L, ZONG G C et al. Prediction of slope displacement based on Conv-LSTM combined with self-attention mechanism[J]. Metal Mine, 2022(11): 193-197. (in Chinese)
|
[12] |
张生杰, 谭 勇. 基于LSTM算法的基坑变形预测[J]. 隧道建设(中英文), 2022, 42(1): 113-120. (ZHANG S J, TAN Y. Deformation prediction of foundation pit based on long short-term memory algorithm[J]. Tunnel Construction, 2022, 42(1): 113-120. (in Chinese)
ZHANG S J, TAN Y. Deformation prediction of foundation pit based on long short-term memory algorithm[J]. Tunnel Construction, 2022, 42(1): 113-120. (in Chinese)
|
[13] |
肖浩汉, 陈祖煜, 徐国鑫, 等. 基于GRU算法的盾构掘进参数预测——以成都地铁19号线为例[J]. 长江科学院院报, 2023, 40(1): 123-131. (XIAO H H, CHEN Z Y, XU G X, et al. Prediction of shield tunneling parameters based on GRU algorithm: a case study on Chengdu metro line 19[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 123-131. (in Chinese) doi: 10.11988/ckyyb.20210916
XIAO H H, CHEN Z Y, XU G X, et al. Prediction of shield tunneling parameters based on GRU algorithm: a case study on Chengdu metro line 19[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 123-131. (in Chinese) doi: 10.11988/ckyyb.20210916
|
[14] |
ZHANG, W G, LI H R, TANG L B, et al. Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks[J]. Acta Geotechnica, 2022, 17(4): 1367-1382. doi: 10.1007/s11440-022-01495-8
|
[15] |
岳振华, 沈 涛, 毛 曦, 等. 循环神经网络的地面沉降预测方法[J]. 测绘科学, 2020, 45(12): 145-152. (YUE Z H, SHEN T, MAO X. Study on prediction method of land subsidence based on recurrent neural network[J]. Science of Surveying and Mapping, 2020, 45(12): 145-152. (in Chinese)
YUE Z H, SHEN T, MAO X. Study on prediction method of land subsidence based on recurrent neural network[J]. Science of Surveying and Mapping, 2020, 45(12): 145-152. (in Chinese)
|
[16] |
李洛宾, 龚晓南, 甘晓露, 等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020, 53(S1): 13-19. (LI L B, GONG X N, GAN X L, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 13-19. (in Chinese)
LI L B, GONG X N, GAN X L, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(S1): 13-19. (in Chinese)
|
[17] |
BAI S J, Kolter J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-03-04) [2024-06-20]. https://arxiv.org/abs/1803.01271.
|
[18] |
HUANG D, HE J, SONG Y X, et al. Displacement prediction of the Muyubao landslide based on a GPS time-series analysis and temporal convolutional network model[J]. Remote Sensing, 2022, 14(11): 2656. doi: 10.3390/rs14112656
|
[19] |
罗德河, 郑东健. 大坝变形的小波分析与ARMA预测模型[J]. 水利水运工程学报, 2016(3): 70-75. (LUO D H, ZHENG D J. Wavelet analysis and ARMA prediction model for dam deformation[J]. Hydro-Science and Engineering, 2016(3): 70-75. (in Chinese)
LUO D H, ZHENG D J. Wavelet analysis and ARMA prediction model for dam deformation[J]. Hydro-Science and Engineering, 2016(3): 70-75. (in Chinese)
|
[20] |
张健飞, 衡 琰. 基于VMD-PE-CNN的混凝土坝变形预测模型[J]. 水利水电技术(中英文), 2022, 53(11): 100-109. (ZHANG J F, HENG Y. VMD-PE-CNN-based deformation prediction model of concrete dam[J]. Water Resources and Hydropower Engineering, 2022, 53(11): 100-109. (in Chinese)
ZHANG J F, HENG Y. VMD-PE-CNN-based deformation prediction model of concrete dam[J]. Water Resources and Hydropower Engineering, 2022, 53(11): 100-109. (in Chinese)
|
[21] |
杜建广, 沈 尤, 常旭辉. 基于EMD方法的组合预测模型在建筑物基坑沉降监测中的应用[J]. 北京测绘, 2022, 36(6): 692-697. (DU J G, SHEN Y, CHANG X H. Application of combined prediction model based on EMD method in building foundation pit settlement monitoring[J]. Beijing Surveying and Mapping, 2022, 36(6): 692-697. (in Chinese)
DU J G, SHEN Y, CHANG X H. Application of combined prediction model based on EMD method in building foundation pit settlement monitoring[J]. Beijing Surveying and Mapping, 2022, 36(6): 692-697. (in Chinese)
|
[22] |
马佳佳, 苏怀智, 王颖慧. 基于EEMD-LSTM-MLR的大坝变形组合预测模型[J]. 长江科学院院报, 2021, 38(5): 47-54. (MA J J, SU H Z, WANG Y H. Combinatorial prediction model for dam deformation based on EEMD-LSTM-MLR[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 47-54. (in Chinese) doi: 10.11988/ckyyb.20200705
MA J J, SU H Z, WANG Y H. Combinatorial prediction model for dam deformation based on EEMD-LSTM-MLR[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 47-54. (in Chinese) doi: 10.11988/ckyyb.20200705
|
[23] |
TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011: 4144-4147.
|
[24] |
CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[EB/OL]. (2014-09-03)[2024-06-20]. https://arxiv.org/abs/1409.1259.
|
[25] |
CHUNG J Y, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2024-06-20]. https://arxiv.org/abs/1412.3555.
|
[26] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|